1,830 research outputs found

    Coexistence of a triplet nodal order-parameter and a singlet order-parameter at the interfaces of ferromagnet-superconductor Co/CoO/In junctions

    Full text link
    We present differential conductance measurements of Cobalt / Cobalt-Oxide / Indium planar junctions, 500nm x 500nm in size. The junctions span a wide range of barriers, from very low to a tunnel barrier. The characteristic conductance of all the junctions show a V-shape structure at low bias instead of the U-shape characteristic of a s-wave order parameter. The bias of the conductance peaks is, for all junctions, larger than the gap of indium. Both properties exclude pure s-wave pairing. The data is well fitted by a model that assumes the coexistence of s-wave singlet and equal spin p-wave triplet fluids. We find that the values of the s-wave and p-wave gaps follow the BCS temperature dependance and that the amplitude of the s-wave fluid increases with the barrier strength.Comment: 5 pages, Accepted to Phys. Rev.

    Influence of temperature dependent inelastic scattering on the superconducting proximity effect

    Full text link
    We have measured the differential resistance of mesoscopic gold wires of different lengths connected to an aluminum superconductor as a function of temperature and voltage. Our experimental results differ substantially from theoretical predictions which assume an infinite temperature independent gap in the superconductor. In addition to taking into account the temperature dependence of the gap, we must also introduce a temperature dependent inelastic scattering length in order to fit our data

    Shot noise measurements in NS junctions and the semiclassical theory

    Full text link
    We present a new analysis of shot noise measurements in normal metal-superconductor (NS) junctions [X. Jehl et al., Nature 405, 50 (2000)], based on a recent semiclassical theory. The first calculations at zero temperature assuming quantum coherence predicted shot noise in NS contacts to be doubled with respect to normal contacts. The semiclassical approach gives the first opportunity to compare data and theory quantitatively at finite voltage and temperature. The doubling of shot noise is predicted up to the superconducting gap, as already observed, confirming that phase coherence is not necessary. An excellent agreement is also found above the gap where the noise follows the normal case.Comment: 2 pages, revtex, 2 eps figures, to appear in Phys. Rev.

    Spontaneous magnetization and Hall effect in superconductors with broken time-reversal symmetry

    Full text link
    Broken time reversal symmetry (BTRS) in d wave superconductors is studied and is shown to yield current carrying surface states. The corresponding spontaneous magnetization is temperature independent near the critical temperature Tc for weak BTRS, in accord with recent data. For strong BTRS and thin films we expect a temperature dependent spontaneous magnetization with a paramagnetic anomaly near Tc. The Hall conductance is found to vanish at zero wavevector q and finite frequency w, however at finite q,w it has an unusual structure.Comment: 7 pages, 1 eps figure, Europhysics Letters (in press

    Towards understanding the variability in biospheric CO2 fluxes:Using FTIR spectrometry and a chemical transport model to investigate the sources and sinks of carbonyl sulfide and its link to CO2

    Get PDF
    Understanding carbon dioxide (CO2) biospheric processes is of great importance because the terrestrial exchange drives the seasonal and interannual variability of CO2 in the atmosphere. Atmospheric inversions based on CO2 concentration measurements alone can only determine net biosphere fluxes, but not differentiate between photosynthesis (uptake) and respiration (production). Carbonyl sulfide (OCS) could provide an important additional constraint: it is also taken up by plants during photosynthesis but not emitted during respiration, and therefore is a potential means to differentiate between these processes. Solar absorption Fourier Transform InfraRed (FTIR) spectrometry allows for the retrievals of the atmospheric concentrations of both CO2 and OCS from measured solar absorption spectra. Here, we investigate co-located and quasi-simultaneous FTIR measurements of OCS and CO2 performed at five selected sites located in the Northern Hemisphere. These measurements are compared to simulations of OCS and CO2 using a chemical transport model (GEOS-Chem). The coupled biospheric fluxes of OCS and CO2 from the simple biosphere model (SiB) are used in the study. The CO2 simulation with SiB fluxes agrees with the measurements well, while the OCS simulation reproduced a weaker drawdown than FTIR measurements at selected sites, and a smaller latitudinal gradient in the Northern Hemisphere during growing season when comparing with HIPPO (HIAPER Pole-to-Pole Observations) data spanning both hemispheres. An offset in the timing of the seasonal cycle minimum between SiB simulation and measurements is also seen. Using OCS as a photosynthesis proxy can help to understand how the biospheric processes are reproduced in models and to further understand the carbon cycle in the real world

    J1−J2J_1-J_2 quantum Heisenberg antiferromagnet on the triangular lattice: a group symmetry analysis of order by disorder

    Full text link
    On the triangular lattice, for J2/J1J_2/J_1 between 1/81/8 and 11, the classical Heisenberg model with first and second neighbor interactions presents four-sublattice ordered ground-states. Spin-wave calculations of Chubukov and Jolicoeur\cite{cj92} and Korshunov\cite{k93} suggest that quantum fluctuations select amongst these states a colinear two-sublattice order. From theoretical requirements, we develop the full symmetry analysis of the low lying levels of the spin-1/2 Hamiltonian in the hypotheses of either a four or a two-sublattice order. We show on the exact spectra of periodic samples (N=12,16N=12,16 and 2828) how quantum fluctuations select the colinear order from the four-sublattice order.Comment: 15 pages, 4 figures (available upon request), Revte

    Anomalous Fermi Liquid Behavior of Overdoped High-Tc Superconductors

    Full text link
    According to a generic temperature vs. carrier-doping (T-p) phase diagram of high-temperature superconductors it has been proposed that as doping increases to the overdoped region they approach gradually a conventional (canonical) Fermi Liquid. However, Hall effect measurements in several systems reported by different authors show a still strong \emph{T}-dependence in overdoped samples. We report here electrical transport measurements of Y_{1-x}Ca_{x}Ba_{2}Cu_{3}O_{7-delta} thin films presenting a temperature dependence of the Hall constant, R_H, which does not present a gradual transition towards the T-independent behavior of a canonical Fermi Liquid. Instead, the T-dependence passes by a minimum near optimal doping and then increases again in the overdoped region. We discuss the theoretical predictions from two representative Fermi Liquid models and show that they can not give a satisfactory explanation to our data. We conclude that this region of the phase diagram in YBCO, as in most HTSC, is not a canonical Fermi Liquid, therefore we call it Anomalous Fermi Liquid.Comment: 9 pages, 12 figures, to be published in Phys. Rev.

    Epilogue: Superconducting Materials Past, Present and Future

    Get PDF
    Experimental contributors to the field of Superconducting Materials share their informal views on the subject.Comment: Epilogue to Physica C Special Issue on Superconducting Materials, Volume 514 (2015

    Proximity Effect Enhancement Induced by Roughness of SN Interface

    Full text link
    Critical temperature reduction ΔTc\Delta T_c is considered for a thin film of a layered superconductor (S) with a rough surface covered by a thick layer of a normal metal (N). The roughness of the SN interface increases the penetration of electrons from the normal metal into the superconductor and leads to an enhancement of the proximity effect. The value of ΔTc\Delta T_c induced by the roughness of the SN interface can be much higher than ΔTc\Delta T_c for a film with a plain surface for an extremely anisotropic layered superconductor with the coherence lengths ξa,ξb≫ξc\xi_a,\xi_b\gg\xi_c.Comment: 2 page

    Evidence for a Bulk Complex Order-Parameter in Y0.9Ca0.1Ba2Cu3O7-delta Thin Films

    Full text link
    We have measured the penetration depth of overdoped Y0.9Ca0.1Ba2Cu3O7-delta (Ca-YBCO) thin films using two different methods. The change of the penetration depth as a function of temperature has been measured using the parallel plate resonator (PPR), while its absolute value was obtained from a quasi-optical transmission measurements. Both sets of measurements are compatible with an order parameter of the form: Delta*dx2-y2+i*delta*dxy, with Delta=14.5 +- 1.5 meV and delta=1.8 meV, indicating a finite gap at low temperature. Below 15 K the drop of the scattering rate of uncondensed carriers becomes steeper in contrast to a flattening observed for optimally doped YBCO films. This decrease supports our results on the penetration depth temperature dependence. The findings are in agreement with tunneling measurements on similar Ca-YBCO thin films.Comment: 11 pages, 4 figure
    • …
    corecore