800 research outputs found

    Ultimate Intelligence Part I: Physical Completeness and Objectivity of Induction

    Full text link
    We propose that Solomonoff induction is complete in the physical sense via several strong physical arguments. We also argue that Solomonoff induction is fully applicable to quantum mechanics. We show how to choose an objective reference machine for universal induction by defining a physical message complexity and physical message probability, and argue that this choice dissolves some well-known objections to universal induction. We also introduce many more variants of physical message complexity based on energy and action, and discuss the ramifications of our proposals.Comment: Under review at AGI-2015 conference. An early draft was submitted to ALT-2014. This paper is now being split into two papers, one philosophical, and one more technical. We intend that all installments of the paper series will be on the arxi

    Hybrid Mechanical Systems

    Full text link
    We discuss hybrid systems in which a mechanical oscillator is coupled to another (microscopic) quantum system, such as trapped atoms or ions, solid-state spin qubits, or superconducting devices. We summarize and compare different coupling schemes and describe first experimental implementations. Hybrid mechanical systems enable new approaches to quantum control of mechanical objects, precision sensing, and quantum information processing.Comment: To cite this review, please refer to the published book chapter (see Journal-ref and DOI). This v2 corresponds to the published versio

    Coding on countably infinite alphabets

    Full text link
    This paper describes universal lossless coding strategies for compressing sources on countably infinite alphabets. Classes of memoryless sources defined by an envelope condition on the marginal distribution provide benchmarks for coding techniques originating from the theory of universal coding over finite alphabets. We prove general upper-bounds on minimax regret and lower-bounds on minimax redundancy for such source classes. The general upper bounds emphasize the role of the Normalized Maximum Likelihood codes with respect to minimax regret in the infinite alphabet context. Lower bounds are derived by tailoring sharp bounds on the redundancy of Krichevsky-Trofimov coders for sources over finite alphabets. Up to logarithmic (resp. constant) factors the bounds are matching for source classes defined by algebraically declining (resp. exponentially vanishing) envelopes. Effective and (almost) adaptive coding techniques are described for the collection of source classes defined by algebraically vanishing envelopes. Those results extend ourknowledge concerning universal coding to contexts where the key tools from parametric inferenceComment: 33 page

    Quantum Computing Without Wavefunctions: Time-Dependent Density Functional Theory for Universal Quantum Computation

    Get PDF
    We prove that the theorems of TDDFT can be extended to a class of qubit Hamiltonians that are universal for quantum computation. The theorems of TDDFT applied to universal Hamiltonians imply that single-qubit expectation values can be used as the basic variables in quantum computation and information theory, rather than wavefunctions. From a practical standpoint this opens the possibility of approximating observables of interest in quantum computations directly in terms of single-qubit quantities (i.e. as density functionals). Additionally, we also demonstrate that TDDFT provides an exact prescription for simulating universal Hamiltonians with other universal Hamiltonians that have different, and possibly easier-to-realize two-qubit interactions. This establishes the foundations of TDDFT for quantum computation and opens the possibility of developing density functionals for use in quantum algorithms

    Syntactic learning by mere exposure - An ERP study in adult learners

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Artificial language studies have revealed the remarkable ability of humans to extract syntactic structures from a continuous sound stream by mere exposure. However, it remains unclear whether the processes acquired in such tasks are comparable to those applied during normal language processing. The present study compares the ERPs to auditory processing of simple Italian sentences in native and non-native speakers after brief exposure to Italian sentences of a similar structure. The sentences contained a non-adjacent dependency between an auxiliary and the morphologically marked suffix of the verb. Participants were presented four alternating learning and testing phases. During learning phases only correct sentences were presented while during testing phases 50 percent of the sentences contained a grammatical violation.</p> <p>Results</p> <p>The non-native speakers successfully learned the dependency and displayed an N400-like negativity and a subsequent anteriorily distributed positivity in response to rule violations. The native Italian group showed an N400 followed by a P600 effect.</p> <p>Conclusion</p> <p>The presence of the P600 suggests that native speakers applied a grammatical rule. In contrast, non-native speakers appeared to use a lexical form-based processing strategy. Thus, the processing mechanisms acquired in the language learning task were only partly comparable to those applied by competent native speakers.</p

    Intervention to enhance skilled arm and hand movements after stroke: A feasibility study using a new virtual reality system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rehabilitation programs designed to develop skill in upper extremity (UE) function after stroke require progressive practice that engage and challenge the learner. Virtual realty (VR) provides a unique environment where the presentation of stimuli can be controlled systematically for optimal challenge by adapting task difficulty as performance improves. We describe four VR tasks that were developed and tested to improve arm and hand movement skills for individuals with hemiparesis.</p> <p>Methods</p> <p>Two participants with chronic post-stroke paresis and different levels of motor severity attended 12 training sessions lasting 1 to 2 hours each over a 3-week period. Behavior measures and questionnaires were administered pre-, mid-, and post-training.</p> <p>Results</p> <p>Both participants improved VR task performance across sessions. The less impaired participant averaged more time on task, practiced a greater number of blocks per session, and progressed at a faster rate over sessions than the more impaired participant. Impairment level did not change but both participants improved functional ability after training. The less impaired participant increased the number of blocks moved on the Box & Blocks test while the more impaired participant achieved 4 more items on the Functional Test of the Hemiparetic UE.</p> <p>Conclusion</p> <p>Two participants with differing motor severity were able to engage in VR based practice and improve performance over 12 training sessions. We were able to successfully provide individualized, progressive practice based on each participant's level of movement ability and rate of performance improvement.</p

    Current challenges in software solutions for mass spectrometry-based quantitative proteomics

    Get PDF
    This work was in part supported by the PRIME-XS project, grant agreement number 262067, funded by the European Union seventh Framework Programme; The Netherlands Proteomics Centre, embedded in The Netherlands Genomics Initiative; The Netherlands Bioinformatics Centre; and the Centre for Biomedical Genetics (to S.C., B.B. and A.J.R.H); by NIH grants NCRR RR001614 and RR019934 (to the UCSF Mass Spectrometry Facility, director: A.L. Burlingame, P.B.); and by grants from the MRC, CR-UK, BBSRC and Barts and the London Charity (to P.C.
    corecore