95 research outputs found

    On the Limitations of Provenance for Queries With Difference

    Get PDF
    The annotation of the results of database transformations was shown to be very effective for various applications. Until recently, most works in this context focused on positive query languages. The provenance semirings is a particular approach that was proven effective for these languages, and it was shown that when propagating provenance with semirings, the expected equivalence axioms of the corresponding query languages are satisfied. There have been several attempts to extend the framework to account for relational algebra queries with difference. We show here that these suggestions fail to satisfy some expected equivalence axioms (that in particular hold for queries on "standard" set and bag databases). Interestingly, we show that this is not a pitfall of these particular attempts, but rather every such attempt is bound to fail in satisfying these axioms, for some semirings. Finally, we show particular semirings for which an extension for supporting difference is (im)possible.Comment: TAPP 201

    Provenance for Aggregate Queries

    Get PDF
    We study in this paper provenance information for queries with aggregation. Provenance information was studied in the context of various query languages that do not allow for aggregation, and recent work has suggested to capture provenance by annotating the different database tuples with elements of a commutative semiring and propagating the annotations through query evaluation. We show that aggregate queries pose novel challenges rendering this approach inapplicable. Consequently, we propose a new approach, where we annotate with provenance information not just tuples but also the individual values within tuples, using provenance to describe the values computation. We realize this approach in a concrete construction, first for "simple" queries where the aggregation operator is the last one applied, and then for arbitrary (positive) relational algebra queries with aggregation; the latter queries are shown to be more challenging in this context. Finally, we use aggregation to encode queries with difference, and study the semantics obtained for such queries on provenance annotated databases

    Computing Possible and Certain Answers over Order-Incomplete Data

    Full text link
    This paper studies the complexity of query evaluation for databases whose relations are partially ordered; the problem commonly arises when combining or transforming ordered data from multiple sources. We focus on queries in a useful fragment of SQL, namely positive relational algebra with aggregates, whose bag semantics we extend to the partially ordered setting. Our semantics leads to the study of two main computational problems: the possibility and certainty of query answers. We show that these problems are respectively NP-complete and coNP-complete, but identify tractable cases depending on the query operators or input partial orders. We further introduce a duplicate elimination operator and study its effect on the complexity results.Comment: 55 pages, 56 references. Extended journal version of arXiv:1707.07222. Up to the stylesheet, page/environment numbering, and possible minor publisher-induced changes, this is the exact content of the journal paper that will appear in Theoretical Computer Scienc

    Possible and Certain Answers for Queries over Order-Incomplete Data

    Get PDF
    To combine and query ordered data from multiple sources, one needs to handle uncertainty about the possible orderings. Examples of such "order-incomplete" data include integrated event sequences such as log entries; lists of properties (e.g., hotels and restaurants) ranked by an unknown function reflecting relevance or customer ratings; and documents edited concurrently with an uncertain order on edits. This paper introduces a query language for order-incomplete data, based on the positive relational algebra with order-aware accumulation. We use partial orders to represent order-incomplete data, and study possible and certain answers for queries in this context. We show that these problems are respectively NP-complete and coNP-complete, but identify many tractable cases depending on the query operators or input partial orders
    • …
    corecore