15 research outputs found
Using Cosmic Rays detected by HST as Geophysical Markers I: Detection and Characterization of Cosmic Rays
The Hubble Space Telescope (HST) has been operational for over 30 years and
throughout that time it has been bombarded by high energy charged particles
colloquially referred to as cosmic rays. In this paper, we present a
comprehensive study of more than 1.2 billion cosmic rays observed with HST
using a custom written python package, \texttt{HSTcosmicrays}, that is
available to the astronomical community. We analyzed dark calibration
files taken as part of routine calibration programs for five different CCD
imagers with operational coverage of Solar Cycle 23 and 24. We observe the
expected modulation of galactic cosmic rays by solar activity. For the three
imagers with the largest non-uniformity in thickness, we independently confirm
the overall structure produced by fringing analyses by analyzing cosmic ray
strikes across the detector field of view. We analyze STIS/CCD observations
taken as HST crosses over the South Atlantic Anomaly and find a peak cosmic ray
flux of . We find strong evidence for two spatially
confined regions over North America and Australia that exhibit increased cosmic
ray fluxes at the level.Comment: 48 pages, 30 figures, submitted to Ap
Cool white dwarfs as standards for infrared observations
In the era of modern digital sky surveys, uncertainties in the flux of stellar standards are commonly the dominant systematic error in photometric calibration and can often affect the results of higher level experiments. The Hubble Space Telescope (HST) spectrophotometry, which is based on computed model atmospheres for three hot (Teff>30000 K) pure hydrogen (DA) white dwarfs, is currently considered the most reliable and internally consistent flux calibration. However, many next-generation facilities (e.g. Harmoni on E-ELT, Euclid, and JWST) will focus on IR observations, a regime in which white dwarf calibration has not yet been robustly tested. Cool DA white dwarfs have energy distributions that peak close to the optical or near-infrared, do not have shortcomings from UV metal line blanketing, and have a reasonably large sky density (≃4 deg−2 at G < 20), making them, potentially, excellent calibrators. Here, we present a pilot study based on STIS + WFC3 observations of two bright DA white dwarfs to test whether targets cooler than current hot primary standards (Teff<20000 K) are consistent with the HST flux scale. We also test the robustness of white dwarf models in the IR regime from an X-shooter analysis of Paschen lines and by cross-matching our previously derived Gaia white dwarf catalogue with observations obtained with 2MASS, UKIDSS, VHS, and WISE
Sub-percent Photometry: Faint DA White Dwarf Spectophotometric Standards for Astrophysical Observatories
We have established a network of 19 faint (16.5 mag 19 mag) northern
and equatorial DA white dwarfs as spectrophotometric standards for present and
future wide-field observatories. Our analysis infers SED models for the stars
that are tied to the three CALSPEC primary standards. Our SED models are
consistent with panchromatic Hubble Space Telescope () photometry to
better than 1%. The excellent agreement between observations and models
validates the use of non-local-thermodynamic-equilibrium (NLTE) DA white dwarf
atmospheres extinguished by interstellar dust as accurate spectrophotometric
references. Our standards are accessible from both hemispheres and suitable for
ground and space-based observatories covering the ultraviolet to the near
infrared. The high-precision of these faint sources make our network of
standards ideally suited for any experiment that has very stringent
requirements on flux calibration, such as studies of dark energy using the
Large Synoptic Survey Telescope (LSST) and the Wide-Field Infrared Survey
Telescope ().Comment: 46 pages, 23 figures, 8 tables, accepted for publication in ApJ
Simultaneous Extreme-Ultraviolet Explorer and Optical Observations of Ad Leonis: Evidence for Large Coronal Loops and the Neupert Effect in Stellar Flares
We report on the first simultaneous Extreme-Ultraviolet Explorer (EUVE) and optical observations of flares on the dMe flare star AD Leonis. The data show the following features: (1) Two flares (one large and one of moderate size) of several hours duration were observed in the EUV wavelength range; (2) Flare emission observed in the optical precedes the emission seen with EUVE; and (3) Several diminutions (DIMs) in the optical continuum were observed during the period of optical flare activity. To interpret these data, we develop a technique for deriving the coronal loop length from the observed rise and decay behavior of the EUV flare. The technique is generally applicable to existing and future coronal observations of stellar flares. We also determine the pressure, column depth, emission measure, loop cross-sectional area, and peak thermal energy during the two EUV flares, and the temperature, area coverage, and energy of the optical continuum emission. When the optical and coronal data are combined, we find convincing evidence of a stellar 'Neupert effect' which is a strong signature of chromospheric evaporation models. We then argue that the known spatial correlation of white-light emission with hard X-ray emission in solar flares, and the identification of the hard X-ray emission with nonthermal bremsstrahlung produced by accelerated electrons, provides evidence that flare heating on dMe stars is produced by the same electron precipitation mechanism that is inferred to occur on the Sun. We provide a thorough picture of the physical processes that are operative during the largest EUV flare, compare and contrast this picture with the canonical solar flare model, and conclude that the coronal loop length may be the most important factor in determining the flare rise time and energetics
Recommended from our members
Photometric calibrations for 21st century science
The answers to fundamental science questions in astrophysics, ranging from the history of the expansion of the universe to the sizes of nearby stars, hinge on our ability to make precise measurements of diverse astronomical objects. As our knowledge of the underlying physics of objects improves along with advances in detectors and instrumentation, the limits on our capability to extract science from measurements is set, not by our lack of understanding of the nature of these objects, but rather by the most mundane of all issues: the precision with which we can calibrate observations in physical units. In principle, photometric calibration is a solved problem - laboratory reference standards such as blackbody furnaces achieve precisions well in excess of those needed for astrophysics. In practice, however, transferring the calibration from these laboratory standards to astronomical objects of interest is far from trivial - the transfer must reach outside the atmosphere, extend over 4{pi} steradians of sky, cover a wide range of wavelengths, and span an enormous dynamic range in intensity. Virtually all spectrophotometric observations today are calibrated against one or more stellar reference sources, such as Vega, which are themselves tied back to laboratory standards in a variety of ways. This system's accuracy is not uniform. Selected regions of the electromagnetic spectrum are calibrated extremely well, but discontinuities of a few percent still exist, e.g., between the optical and infrared. Independently, model stellar atmospheres are used to calibrate the spectra of selected white dwarf stars, e.g. the HST system, but the ultimate accuracy of this system should be verified against laboratory sources. Our traditional standard star systems, while sufficient until now, need to be improved and extended in order to serve future astrophysics experiments. This white paper calls for a program to improve upon and expand the current networks of spectrophotometrically calibrated stars to provide precise calibration with an accuracy of equal to and better than 1% in the ultraviolet, visible and near-infrared portions of the spectrum, with excellent sky coverage and large dynamic range
ACCESS: Design and Sub-System Performance
Establishing improved spectrophotometric standards is important for a broad range of missions and is relevant to many astrophysical problems. ACCESS, "Absolute Color Calibration Experiment for Standard Stars", is a series of rocket-borne sub-orbital missions and ground-based experiments designed to enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35 -1.7 micrometer bandpass