46 research outputs found

    Amygdala and neocortex: Common origins and shared mechanisms.

    No full text
    Precursors in the dorsal pallium were thought to give rise exclusively to neocortex during development. A new study finds that a stream of migrating cells from this area also gives rise to a nucleus in the amygdaloid complex

    Conditional RNAi in mice.

    No full text
    RNA interference (RNAi)-mediated gene knockdown has developed into a routine method to assess gene function in cultured mammalian cells in a fast and easy manner. For the use of RNAi in mice, short hairpin (sh) RNAs expressed stably from the genome are a fast alternative to conventional knockout approaches. We developed a strategy for complete or conditional gene knockdown in mice, where the Cre/loxP system is used to activate RNAi in a time and tissue dependent manner. Alternatively doxycycline controlled shRNA expression vectors can be used for conditional gene silencing. Single copy RNAi constructs are placed into the Rosa26 locus of ES cells by recombinase mediated cassette exchange and transmitted through the germline of chimeric mice. The shRNA transgenic offspring can be either directly used for phenotypic analysis or are further crossed to a Cre transgenic strain to activate conditional shRNA vectors. The site specific insertion of single copy shRNA vectors allows the expedite and reproducible production of knockdown mice and provides an easy and fast approach to assess gene function in vivo

    Deficiency of corticotropin-releasing hormone type-2 receptor alters sleep responses to bacterial lipopolysaccharide in mice.

    No full text
    In response to infectious stimuli, enhanced non-rapid eye movement sleep (NREMS) occurs, which is driven by pro-inflammatory cytokines. Those cytokines further elicit the release of corticotropin-releasing hormone (CRH), resulting in the activation of the hypothalamic-pituitary-adrenocortical axis. Signals of CRH are mediated by two receptor types, namely CRH-R1 and -R2. The role of CRH-R1 in wake-promoting effects of CRH has been rather clarified, whereas the involvement of CRH-R2 in sleep-wake regulation is poorly understood. To investigate whether CRH-R2 interferes with sleep responses to immune challenge, this study examined effects of bacterial lipopolysaccharide (LPS) on sleep in CRH-R2 deficient (KO) mice. CRH-R2 KO mice and control littermates (CL) were implanted with electrodes for recording electroencephalogram (EEG) and electromyogram. After recovery, LPS was applied by intraperitoneal injection at doses of 0.1, 1.0, or 10 μg at dark onset. In response to LPS injection NREMS of both genotypes was enhanced in a dose-dependent manner. However, CRH-R2 KO mice showed a larger increase, in particular after 10 μg of LPS compared to CL mice. During postinjection, reduced delta power for NREMS was detected in both genotypes after each dose, but the highest dose evoked a marked elevation of EEG activity in a limited frequency band (4 Hz). However, the EEG power of lower frequencies (1-2 Hz) increased more in CRH-R2 KO than in CL mice. The results indicated that CRH-R2 KO mice show greater NREMS responses to LPS, providing evidence that CRH-R2 participates in sleep-wake regulation via an interaction with the activated immune system

    Wake-promoting effects of orexin: Its independent actions against the background of an impaired corticotropine-releasing hormone receptor system.

    No full text
    It is widely accepted that orexin (hypocretin) bears wake-promoting effects. While under normal conditions the circadian rhythm of orexin release has a clear circadian distribution, the amplitude of orexin fluctuation is dampened in depression. Interestingly, clinical symptoms of depression include several sleep disturbances. In this disease, corticotropin-releasing hormone (CRH) seems to be another factor influencing sleep. As neurophysiological interactions and anatomical connections between the orexinergic and the CRH system point to mutual influences of these two neuropeptides, we examined whether a dysfunctional CRH-receptor system in two different CRH receptor knock out models alters general wake-promoting effects of orexin applied exogenously. Orexin was injected intracerebroventricularlly into CNS-restricted CRH-receptor type 1 knockout mice (CRH-R1 KO) and CRH-receptor type 2 knockout mice (CRH-R2 KO) and baseline sleep was recorded from the freely behaving mice. A third experiment included antisauvagine-30 injections (CRH-R2 antagonist) into CRH-R1 KO animals. Orexin had similar wake-promoting effects in CRH-R1KO mice, in CRH-R2 KO animals and in CRH-R1KO mice treated with antisauvagine-30. Consistent results were obtained from all corresponding control littermate experiments. According to our results we conclude that the wake-promoting effects of orexin are not influenced by a possible contribution of CRH

    Corticotropin-releasing factor (CRF) receptor type 1-dependent modulation of synaptic plasticity.

    No full text
    CRF receptor type (CRHR) 1 exerts neuroregulatory control on associative learning processes such as fear and anxiety like behaviour. Using hippocampal slices, we investigated the neuronal excitability in mice lacking CRHR1 (Crhr1(-/-)). Compared to wild-type mice, long-term potentiation (LTP) elicited by 100 pulses at 100Hz was not different. Unexpectedly, at lower frequencies (1, 5 or 10Hz), the resulting synaptic changes in CA1 neurons of Crhr1(-/-) were systematically shifted towards long-term depression (LTD). Furthermore, testing paired-pulse paradigm revealed a GABA receptor-dependent decrease of paired-pulse ratio in Crhr1(-/-). It might be assumed that a lack of CRHR1 induce developmental changes which resulted in altered GABAergic activity, producing attenuated synaptic potentiation after repetitive stimulation and thus favouring LTD in principal neurons. Since CRHR1 are located in GABAergic somata, axons and boutons the activity of these receptor types rather might contribute to the development of the neuronal ability for plasticity like processes on the level of NMDAR subunit composition and GABAergic activity

    <em>CACNA1C</em> (Ca<sub>v</sub>1.2) modulates electroencephalographic rhythm and rapid eye movement sleep recovery.

    No full text
    Study Objectives: The CACNA1C gene encodes the alpha 1C (&alpha;1C) subunit of the Cav1.2 voltage-dependent L-type calcium channel (LTCC). Some of the other voltage-dependent calcium channels, e.g., P-/Q-type, Cav2.1; N-type, Cav2.2; E-/R-type, Cav2.3; and T-type, Cav3.3 have been implicated in sleep modulation. However, the contribution of LTCCs to sleep remains largely unknown. Based on recent genome-wide association studies, CACNA1C emerged as one of potential candidate genes associated with both sleep and psychiatric disorders. Indeed, most patients with mental illnesses have sleep problems and vice versa. Design: To investigate an impact of Cav1.2 on sleep-wake behavior and electroencephalogram (EEG) activity, polysomnography was performed in heterozygous Cacna1c (HET) knockout mice and their wild-type (WT) littermates under baseline and challenging conditions (acute sleep deprivation and restraint stress). Measurements and Results: HET mice displayed significantly lower EEG spectral power than WT mice across high frequency ranges (beta to gamma) during wake and rapid eye movement (REM) sleep. Although HET mice spent slightly more time asleep in the dark period, daily amounts of sleep did not differ between the two genotypes. However, recovery sleep after exposure to both types of challenging stress conditions differed markedly; HET mice exhibited reduced REM sleep recovery responses compared to WT mice. Conclusions: These results suggest the involvement of Cacna1c (Cav1.2) in fast electroencephalogram oscillations and REM sleep regulatory processes. Lower spectral gamma activity, slightly increased sleep demands, and altered REM sleep responses found in heterozygous Cacna1c knockout mice may rather resemble a sleep phenotype observed in schizophrenia patients

    Brain-specific inactivation of the Crhr1 gene inhibits post-dependent and stress-induced alcohol intake, but does not affect relapse-like drinking.

    No full text
    Corticotropin-releasing hormone (CRH) and its receptor, CRH receptor-1 (CRHR1), have a key role in alcoholism. Especially, post-dependent and stress-induced alcohol intake involve CRH/CRHR1 signaling within extra-hypothalamic structures, but a contribution of the hypothalamic-pituitary-adrenal (HPA) axis activity might be involved as well. Here we examined the role of CRHR1 in various drinking conditions in relation to HPA and extra-HPA sites, and studied relapse-like drinking behavior in the alcohol deprivation model (ADE). To dissect CRH/CRHR1 extra-HPA and HPA signaling on a molecular level, a conditional brain-specific Crhr1-knockout (Crhr1(NestinCre)) and a global knockout mouse line were studied for basal alcohol drinking, stress-induced alcohol consumption, deprivation-induced intake, and escalated alcohol consumption in the post-dependent state. In a second set of experiments, we tested CRHR1 antagonists in the ADE model. Stress-induced augmentation of alcohol intake was lower in Crhr1(NestinCre) mice as compared with control animals. Crhr1(NestinCre) mice were also resistant to escalation of alcohol intake in the post-dependent state. Contrarily, global Crhr1 knockouts showed enhanced stress-induced alcohol consumption and a more pronounced escalation of intake in the post-dependent state than their control littermates. Basal intake and deprivation-induced intake were unaltered in both knockout models when compared with their respective controls. In line with these findings, CRHR1 antagonists did not affect relapse-like drinking after a deprivation period in rats. We conclude that CRH/CRHR1 extra-HPA and HPA signaling may have opposing effects on stress-related alcohol consumption. CRHR1 does not have a role in basal alcohol intake or relapse-like drinking situations with a low stress load

    Urocortin 2 modulates aspects of social behaviour in mice.

    No full text
    Urocortin 2 (UCN2), a member of the corticotropin-releasing hormone family, is involved in the regulation of stress-related behaviours in rodents. To determine its physiological function we generated mice lacking UCN2 by applying a classical knockout strategy. We examined hypothalamus-pituitary-adrenocortical axis activity, anxiety- and depression-related behaviours without finding significant differences between mutant and wild-type littermates. Investigating social abilities we observed, that male, but not female, UCN2 knockout animals showed an altered social behaviour. Here we report that male UCN2 null mice showed more passive social interactions and reduced aggressiveness in comparison to wild-type animals. In conclusion, UCN2 seems to modulate aggressive behaviour in male mice. Furthermore, our findings provide additional evidence for previously reported sex-specific effects of UCN2

    Vitamin D₃ signalling in the brain enhances the function of phosphoprotein enriched in astrocytes - 15 kD (PEA-15).

    No full text
    In spite of growing evidence linking vitamin D(3) levels to mental health disorders, little is known about its direct targets in the brain. This study set out to investigate targets of vitamin D(3) in a human brain stem cell line. We employed arrays with antibodies directed against more than 600 structural and signalling proteins, including phospho-variants. Over 180 proteins responded to vitamin D(3), such as cyclin-dependent protein-serine kinase 1/2, epidermal growth factor receptor-tyrosine kinase, protein kinase A, protein-serine kinase Bgamma and protein-serine kinase Calpha. PEA-15 (phosphoprotein enriched in astrocytes-15 kD, also known as PED), known to be involved in various anti-proliferative and anti-apoptotic effects, was strongly up-regulated. In silico promoter analysis revealed conserved binding sites for vitamin D(3) receptor, suggesting a strong vitamin D(3) dependency of the PEA-15 promoter. PEA-15 up-regulation by vitamin D(3) could be confirmed by Western blot in two different cell lines. Analysis of mRNA and protein phosphorylation status of PEA-15 suggests that increased PEA-15 promoter activity and increased protein stabilization contribute to the overall rise of PEA-15 protein. In a functional test of this novel pathway, we demonstrated that vitamin D(3) was able to rescue cells from TRAIL-induced apoptosis through regulation of the PEA-15 expression and function. Summarized, our study presents novel targets of vitamin D(3) relevant for apoptosis and cell proliferation, and thus strongly supports a function of vitamin D(3) in the brain that impacts on processes highly relevant for major neurological disorders
    corecore