115 research outputs found

    Momentum distributions and numerical methods for strongly interacting one-dimensional spinor gases

    Get PDF
    One-dimensional spinor gases with strong delta interaction fermionize and form a spin chain. The spatial degrees of freedom of this atom chain can be described by a mapping to spinless noninteracting fermions and the spin degrees of freedom are described by a spin-chain model with nearest-neighbor interactions. Here, we compute momentum and occupation-number distributions of up to 16 strongly interacting spinor fermions and bosons as a function of their spin imbalance, the strength of an externally applied magnetic field gradient, the length of their spin, and for different excited states of the multiplet. We show that the ground-state momentum distributions resemble those of the corresponding noninteracting systems, apart from flat background distributions, which extend to high momenta. Moreover, we show that the spin order of the spin chain---in particular antiferromagnetic spin order---may be deduced from the momentum and occupation-number distributions of the system. Finally, we present efficient numerical methods for the calculation of the single-particle densities and one-body density matrix elements and of the local exchange coefficients of the spin chain for large systems containing more than 20 strongly interacting particles in arbitrary confining potentials.Comment: See the ancillary files for the Mathematica notebook used to calculate the results of this paper, the derivation of the formula for the one-body density matrix elements, given by Eq. (22), and a table with the local exchange coefficients of up to 60 harmonically trapped particles. A less efficient method for calculating the exchange coefficients was given in the 2nd version of this manuscrip

    Evolution from a Bose-Einstein condensate to a Tonks-Girardeau gas: An exact diagonalization study

    Full text link
    We study ground state properties of spinless, quasi one-dimensional bosons which are confined in a harmonic trap and interact via repulsive delta-potentials. We use the exact diagonalization method to analyze the pair correlation function, as well as the density, the momentum distribution, different contributions to the energy and the population of single-particle orbitals in the whole interaction regime. In particular, we are able to trace the fascinating transition from bosonic to fermi-like behavior in characteristic features of the momentum distribution which is accessible to experiments. Our calculations yield quantitative measures for the interaction strength limiting the mean-field regime on one side and the Tonks-Girardeau regime on the other side of an intermediate regime.Comment: 5 pages, 5 figure

    Dipolar particles in a double-trap confinement: Response to tilting the dipolar orientation

    Full text link
    We analyze the microscopic few-body properties of dipolar particles confined in two parallel quasi-one-dimensional harmonic traps. In particular, we show that an adiabatic rotation of the dipole orientation about the trap axes can drive an initially non-localized few-fermion state into a localized state with strong inter-trap pairing. For an instant, non-adiabatic rotation, however, localization is inhibited and a highly excited state is reached. This state may be interpreted as the few-body analog of a super-Tonks-Girardeau state, known from one-dimensional systems with contact interactions

    Effective multi-body induced tunneling and interactions in the Bose-Hubbard model of the lowest dressed band of an optical lattice

    Full text link
    We construct the effective lowest-band Bose-Hubbard model incorporating interaction-induced on-site correlations. The model is based on ladder operators for local correlated states, which deviate from the usual Wannier creation and annihilation, allowing for a systematic construction of the most appropriate single-band low-energy description in the form of the extended Bose-Hubbard model. A formulation of this model in terms of ladder operators not only naturally contains the previously found effective multibody interactions, but also contains multibody-induced single-particle tunneling, pair tunneling, and nearest-neighbor interaction processes of higher orders. An alternative description of the same model can be formulated in terms of occupation-dependent Bose-Hubbard parameters. These multiparticle effects can be enhanced using Feshbach resonances, leading to corrections which are well within experimental reach and of significance to the phase diagram of ultracold bosonic atoms in an optical lattice. We analyze the energy-reduction mechanism of interacting atoms on a local lattice site and show that this cannot be explained only by a spatial broadening of Wannier orbitals on a single-particle level, which neglects correlations.Comment: 16 pages, 6 figure

    Exact Solution of Strongly Interacting Quasi-One-Dimensional Spinor Bose Gases

    Full text link
    We present an exact analytical solution of the fundamental system of quasi-one-dimensional spin-1 bosons with infinite delta-repulsion. The eigenfunctions are constructed from the wave functions of non-interacting spinless fermions, based on Girardeau's Fermi-Bose mapping, and from the wave functions of distinguishable spins. We show that the spinor bosons behave like a compound of non-interacting spinless fermions and non-interacting distinguishable spins. This duality is especially reflected in the spin densities and the energy spectrum. We find that the momentum distribution of the eigenstates depends on the symmetry of the spin function. Furthermore, we discuss the splitting of the ground state multiplet in the regime of large but finite repulsion.Comment: Revised to discuss large but finite interaction

    Influence of the particle number on the spin dynamics of ultracold atoms

    Get PDF
    We study the dependency of the quantum spin dynamics on the particle number in a system of ultracold spin-1 atoms within the single-spatial-mode approximation. We find, for all strengths of the spin-dependent interaction, convergence toward the mean-field dynamics in the thermodynamic limit. The convergence is, however, particularly slow when the spin-changing collisional energy and the quadratic Zeeman energy are equal; that is, deviations between quantum and mean-field spin dynamics may be extremely large under these conditions. Our estimates show that quantum corrections to the mean-field dynamics may play a relevant role in experiments with spinor Bose-Einstein condensates. This is especially the case in the regime of few atoms, which may be accessible in optical lattices. Here, spin dynamics is modulated by a beat note at large magnetic fields due to the significant influence of correlated many-body spin states. © 2010 The American Physical Society

    Self-bound many-body states of quasi-one-dimensional dipolar Fermi gases: Exploiting Bose-Fermi mappings for generalized contact interactions

    Get PDF
    Using a combination of results from exact mappings and from mean-field theory we explore the phase diagram of quasi-one-dimensional systems of identical fermions with attractive dipolar interactions. We demonstrate that at low density these systems provide a realization of a single-component one-dimensional Fermi gas with a generalized contact interaction. Using an exact duality between one-dimensional Fermi and Bose gases, we show that when the dipole moment is strong enough, bound many-body states exist, and we calculate the critical coupling strength for the emergence of these states. At higher densities, the Hartree-Fock approximation is accurate, and by combining the two approaches we determine the structure of the phase diagram. The many-body bound states should be accessible in future experiments with ultracold polar molecules

    Two ultracold atoms in a completely anisotropic trap

    Full text link
    As a limiting case of ultracold atoms trapped in deep optical lattices, we consider two interacting atoms trapped in a general anisotropic harmonic oscillator potential, and obtain exact solutions of the Schrodinger equation for this system. The energy spectra for different geometries of the trapping potential are compared.Comment: 4 pages, 2 figure

    Heteronuclear molecules in an optical lattice: Theory and experiment

    Full text link
    We study properties of two different atoms at a single optical lattice site at a heteronuclear atomic Feshbach resonance. We calculate the energy spectrum, the efficiency of rf association and the lifetime as a function of magnetic field and compare the results with the experimental data obtained for K-40 and Rb-87 [C. Ospelkaus et al., Phys. Rev. Lett. 97, 120402 (2006)]. We treat the interaction in terms of a regularized delta function pseudopotential and consider the general case of particles with different trap frequencies, where the usual approach of separating center-of-mass and relative motion fails. We develop an exact diagonalization approach to the coupling between center-of-mass and relative motion and numerically determine the spectrum of the system. At the same time, our approach allows us to treat the anharmonicity of the lattice potential exactly. Within the pseudopotential model, the center of the Feshbach resonance can be precisely determined from the experimental data.Comment: 9 pages, 7 figures, revised discussion of transfer efficienc
    • …
    corecore