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One-dimensional spinor gases with strong δ interaction fermionize and form a spin chain. The spatial degrees of
freedom of this atom chain can be described by a mapping to spinless noninteracting fermions and the spin degrees
of freedom are described by a spin-chain model with nearest-neighbor interactions. Here, we compute momentum
and occupation-number distributions of up to 16 strongly interacting spinor fermions and bosons as a function
of their spin imbalance, the strength of an externally applied magnetic field gradient, the length of their spin,
and for different excited states of the multiplet. We show that the ground-state momentum distributions resemble
those of the corresponding noninteracting systems, apart from flat background distributions, which extend to
high momenta. Moreover, we show that the spin order of the spin chain—in particular antiferromagnetic spin
order—may be deduced from the momentum and occupation-number distributions of the system. Finally, we
present efficient numerical methods for the calculation of the single-particle densities and one-body density
matrix elements and of the local exchange coefficients of the spin chain for large systems containing more than
20 strongly interacting particles in arbitrary confining potentials.
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I. INTRODUCTION

A one-dimensional (1D) Bose gas of spinless impenetrable
point particles can be solved exactly through a simple mapping
to spinless noninteracting 1D fermions [1]. Such a so-called
Tonks-Girardeau gas was first realized in 2004 in experiments
with ultracold atoms [2,3]. The infinitely strong repulsion
between the particles prevents the bosons from staying at
the same position. As a result, the local two- and three-
body correlation functions of strongly interacting bosons are
substantially reduced compared to noninteracting ones [4,5].
Moreover, the thermalization of a 1D Bose gas is substantially
slower than in three dimensions [6].

An extremely useful feature of ultracold atoms in 1D is that
the strength g of the effective 1D δ interaction may be tuned to
nearly arbitrary positive and negative values depending on the
strength of the externally applied magnetic (B) field [7] and
of the transverse confinement [8]. More precisely, the inverse
interaction strength 1/g may be tuned continuously from small
positive values (strong repulsion) to small negative values
(strong attraction) through a small change of the external
B field in the vicinity of a confinement-induced resonance.
Thereby the ground state at 1/g > 0 evolves continuously into
a highly excited metastable state at 1/g < 0 [9], the so-called
super Tonks-Girardeau gas [10], which resembles a gas of
impenetrable particles with a finite diameter.

Moreover, a few years ago, Jochim and co-workers were
able to prepare a few ultracold fermionic atoms determin-
istically in their ground state [11]. This enabled them to
observe the fermionization of two distinguishable fermions
in a 1D trap [12]. Although the experiment could be described
using the analytical solution of two δ-interacting particles in
a 1D harmonic trap [13], there was no appropriate theoretical
description for three and more particles available at that time.

*frank.deuretzbacher@itp.uni-hannover.de

The reason for that was that the existing theory had previously
focused on the Tonks-Girardeau (1/g = 0) [14–16] and/or
the thermodynamic limit [17–19] of multicomponent atomic
gases and on the spin-incoherent Luttinger liquid regime [20].
Consequently, Ref. [12] stimulated an active theoretical
research on this spin-1/2 few-fermion system [21–26] aimed
at unraveling the structure of the quasidegenerate ground-state
multiplet. Finally, a perturbative approach [27] and a spin-
chain model [28] have been developed for the regime around
1/g = 0. Only recently, a 1D system of fermions with large
spin [29], and an antiferromagnetic Heisenberg spin chain of
up to four fermions in a 1D trap [30], have been realized.

The spin-chain model has been applied to the impurity
problem [31] and it has been generalized to spin-dependent
interactions [32–34], excited motional states [35], Bose-
Fermi mixtures [36], spin-orbit coupling [37,38], and p-wave
interactions [39,40]. Numerical simulations also considered a
few two-component bosons [41–44] and a large number of
fermions [45] in the whole interaction regime.

Here, we present momentum and occupation-number
distributions of large strongly interacting systems in different
regimes. In particular, we study these distributions as a
function of the spin imbalance, the strength of a B-field
gradient, the excitations of the spin chain, the length of
the particle spin, and the symmetry of the many-body
wave function (fermions and bosons). We show that the
antiferromagnetic ground state of strongly interacting spin-1/2
fermions can be clearly identified by means of its momentum
and occupation-number distributions—in contrast to strongly
interacting atoms in optical lattices. Finally, we present
efficient numerical methods for the calculation of the occurring
multidimensional integrals that can be applied to systems
with more than 20 particles in arbitrary confining potentials.

The paper is organized as follows: Section II gives
an overview of the spin-chain model of strongly inter-
acting 1D spinor gases, Sec. III presents momentum and
occupation-number distributions in various regimes, and

2469-9926/2016/94(2)/023606(15) 023606-1 ©2016 American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutionelles Repositorium der Leibniz Universität Hannover

https://core.ac.uk/display/130519669?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevA.94.023606


F. DEURETZBACHER, D. BECKER, AND L. SANTOS PHYSICAL REVIEW A 94, 023606 (2016)

Sec. IV presents the numerical methods for the efficient
calculation of the single-particle densities (Sec. IV A), the
one-body density matrix elements (Sec. IV B), and the local
exchange coefficients (Sec. IV C). We summarize our results
in Sec. V.

II. SPIN-CHAIN MODEL FOR 1D STRONGLY
INTERACTING SPINOR GASES

A. Mapping to spinless noninteracting fermions and a chain
of distinguishable spins

We consider N indistinguishable ultracold atoms (bosons
or fermions) with spin degrees of freedom. The atoms are
trapped by a spin-independent external potential V along the
axial z direction and they interact through a spin-independent
δ potential of strength g. The radial motion of the atoms is
frozen to the ground state. The interaction strength g of this
quasi-1D system is freely tunable through a magnetic Feshbach
resonance and through the strong radial confinement [7,8]. The
effective Hamiltonian of the quasi-1D system reads

H =
∑

i

[
− �

2

2m

∂2

∂z2
i

+ V (zi)

]
+ g

∑
i<j

δ(zi − zj ). (1)

In the limit of infinite repulsion, g = ∞, the multicompo-
nent system assumes properties of spinless noninteracting
fermions [1] and a chain of distinguishable noninteracting
spins [15]. The many-body wave functions of the ground-state
multiplet may be constructed exactly through a generalization
of Girardeau’s Fermi-Bose mapping [1] to particles with spin
and are given by [15]

|ψ〉 =
√

N ! S±(|id〉|χ〉). (2)

S± is the (anti)symmetrization operator, |id〉 is a spatial many-
body wave function describing N spinless distinguishable
particles with infinite δ repulsion in a longitudinal potential
V (z) and ordering z1 < · · · < zN , and |χ〉 is an arbitrary
spin function of N distinguishable spins, which describes the
spin configuration of the spin chain.1 More precisely, S± =
(1/N !)

∑
P (±1)P P̂ , where the sum runs over all permutations

P of N = {1, . . . ,N}, (−1)P is the sign of the permutation
P , and the unitary operator P̂ permutes particle indices,
P̂ |α1〉1 · · · |αN 〉N = |α1〉P (1) · · · |αN 〉P (N), where α1, . . . ,αN

are quantum numbers. The spatial wave function |id〉 of the
spinless distinguishable particles with infinite δ repulsion is
given by [15] (see Appendix A for more details)

〈z1, . . . ,zN |id〉 =
√

N ! θ (z1, . . . ,zN )|ψF |, (3)

where θ (z1, . . . ,zN ) = 1 if z1 < · · · < zN , and zero otherwise,
and where ψF = det[φi(zj )]i,j=1,...,N/

√
N ! is the ground-state

Slater determinant of N spinless noninteracting fermions
with the eigenfunctions φ1(z), φ2(z), . . . of a single particle
in the external potential V (z). Here, the only difference to
Girardeau’s mapping for spinless hard-core bosons is the

1Note that besides the usual configurations, the model is also
applicable to fermions with integer spin or bosons with half-integer
spin.

additional multiplication with θ (z1, . . . ,zN ), which generates
a wave function for distinguishable particles with particle
ordering z1 < · · · < zN (the factor

√
N ! ensures normaliza-

tion). Finally, |χ〉 = ∑
m1,... ,mN

cm1,... ,mN
|m1, . . . ,mN 〉 is an

arbitrary N -particle spin function with mi being the spin
z-projection quantum number of the ith particle. Note that
although |id〉 and |χ〉 may both be nonsymmetric, application
of S± to the product |id〉|χ〉 ensures that the full many-body
wave function has the desired symmetry.

Equation (2) constitutes a one-to-one correspondence
between the pure spin functions |χ〉 of N distinguishable
spins and the full many-body wave functions |ψ〉, which
solve the Hamiltonian (1) in the limit of infinite δ repulsion,
g = ∞ [15]. Moreover, not only spin functions |χ〉 may be
mapped onto full many-body wave functions |ψ〉, and vice
versa, but any observable of the full continuous Hilbert space
may be expressed by its counterpart in the discrete spin space.
This simplifies the description of fermionized multicomponent
particles substantially, as shown in the following.

B. Single-particle densities

Important experimentally measurable observables are the
spin densities of the system [15,16,22,28]. The density
distribution of the mth spin component is given by [15]

ρm(z) =
N∑

i=1

ρ(i)(z)ρ(i)
m , (4)

with the probability to find the ith particle (with whatever spin)
at position z,

ρ(i)(z) = N !
∫

dz1 · · · dzNδ(z − zi)θ (z1, . . . ,zN )|ψF |2, (5)

and the probability that the magnetization of the ith spin equals
m,

ρ(i)
m =

∑
m1,... ,mN

|〈m1, . . . ,mN |χ〉|2δm,mi
. (6)

Clearly, Eq. (4) shows that the continuous spin density ρm(z)
is fully characterized by the N -tuple (ρ(1)

m , . . . ,ρ(N)
m ).

The single-particle densities 1–25 of 50 harmonically
trapped particles are shown in Fig. 1. Obviously, they look
like the densities of individual localized particles, as found
in a Wigner crystal that is stabilized by strong longer-range
interactions. The only difference is the fact that here the
overlap between the densities of neighboring particles is
much larger [46]. One might argue that the single-particle
densities (5) are artificially constructed and not measurable
and that only the spin densities (4) can be measured in the
experiment. However, both densities may be identical for
some spin configurations. Consider, e.g., a spin chain, in
which the ith spin points upwards and all the other spins
point downwards, | . . . ,↓,↓,↑,↓,↓, . . . 〉. The spin density of
the spin-up component then equals the ith particle density,
thus making it visible. Similarly, one may identify individual
particle densities in a spin chain in which at least two or three
spin-down particles are between any pair of spin-up particles,
| . . . ,↓,↓,↑,↓,↓,↓,↑,↓,↓ . . . 〉. Such spin configurations can
be prepared by rotating individual spins.
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FIG. 1. Single-particle densities of particles 1 (left) to 25 (right)
of a spin chain in a harmonic trap consisting of 50 particles. The
densities 26–50 are obtained by mirroring at the vertical axis through
the origin. l is the harmonic-oscillator length.

Although Eq. (4) suggests that evaluating the spin densities
is very simple, it actually proved to be rather difficult for
large particle numbers as the calculation of the single-particle
densities (5) involves an integration over the increasingly
complicated domain z1 < · · · < zi−1 < z < zi+1 < · · · < zN .
Therefore, we present in Sec. IV A a method that enables the
calculation of the single-particle densities for large particle
numbers.

C. One-body density matrix elements

The momentum and occupation-number distributions have
played a central role in recent experiments [29,30]. In particu-
lar, the antiferromagnetic spin state of three spin-1/2 fermions
was clearly identified by means of its occupation-number
distribution [30]. In Sec. III, we will show and discuss selected
distributions in several regimes. The momentum distribution
of the mth spin component is given by

ρm(k) = 1

2π

∫
dzdz′eik(z−z′)ρm(z,z′), (7)

and the mean occupancies of the mth spin component read

ρm(n) =
∫

dzdz′φn(z)φ∗
n(z′)ρm(z,z′). (8)

Both distributions are calculated from the one-body density
matrix of the mth spin component,

ρm(z,z′) =
N∑

i,j=1

(±1)i+j ρ(i,j )(z,z′)ρ(i,j )
m . (9)

Here, the + (−) sign applies to bosons (fermions). Moreover,
we defined the spin-independent matrix elements of the one-
body density matrix,

ρ(i,j )(z,z′) = 〈id|ρ̂(i)(z,z′)|Pi,...,j 〉, (10)

with ρ̂(i)(z,z′) = |z〉i〈z′|i , and the matrix elements

ρ(i,j )
m = 〈χ |ρ̂(i)

m P̂i,...,j |χ〉, (11)
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FIG. 2. One-body density matrix elements ρ(i,j )(z,z′) of 20
harmonically trapped particles. l is the harmonic-oscillator length.

with ρ̂(i)
m = |m〉i〈m|i . The loop permutation operator P̂i,...,j

permutes the particle indices according to the rule i → i +
1 → i + 2 → · · · → j − 1 → j → i (here we assumed that
i < j ; see Appendix A for the full definition). The sector
wave function |P 〉 (P is a permutation) is proportional to
|ψF | in the sector zP (1) < · · · < zP (N), and zero otherwise; see
Appendix A.

Equation (9) is a generalization of Eq. (4) and indeed
one finds ρm(z) = ρm(z,z) = ∑

i ρ
(i,i)(z,z)ρ(i,i)

m .2 Again, the
continuous spatial distribution ρm(z,z′) is fully characterized
by the discrete N2-tuple (. . . ,ρ

(i,j )
m , . . . ). That is, once we

have calculated the spin-independent one-body density matrix
elements ρ(i,j )(z,z′), we can immediately calculate the distri-
bution ρm(z,z′) for any spin configuration |χ〉. The calculation
of the distributions ρ(i,j )(z,z′) is, however, difficult for large
particle numbers. Therefore, we present in Sec. IV B a method
that enables the efficient calculation of the ρ(i,j )(z,z′) for large
systems.

The spin-independent one-body density matrix elements
ρ(i,j )(z,z′) of 20 harmonically trapped particles are shown
in Fig. 2. They resemble Gaussian-like distributions, which
are located at the positions (i,j ) on a checkerboard. On
the diagonal, z = z′, we recover the single-particle densities
shown in Fig. 1, which means that ρ(i,i)(z,z) = ρ(i)(z). Also,
one reads immediately from the definitions that ρ(i,i)

m = ρ(i)
m .

Equations (9)–(11) show that the shape of the one-body
density matrix is directly related to the symmetry of the
spin function |χ〉 under loop permutations Pi,...,j . To be-
come more familiar with Eqs. (9)–(11), we consider the
spin-polarized case |χ〉 = |↑,↑,↑, . . . 〉. In that case, ρ

(i,j )
↑ =

1, ρ
(B)
↑ (z,z′) = ∑

i,j ρ(i,j )(z,z′) =: ρ(B)(z,z′) for impenetrable

pointlike bosons and ρ
(F )
↑ (z,z′) = ∑

i,j (−1)i+j ρ(i,j )(z,z′) =:
ρ(F )(z,z′) for noninteracting fermions. That is, the one-body
density matrix of spinless hard-core bosons, ρ(B)(z,z′), is a
nonalternating sum of the individual ρ(i,j )(z,z′), while that of
spinless noninteracting fermions, ρ(F )(z,z′), is an alternating
sum of all matrix elements ρ(i,j )(z,z′). The distribution
ρ(B)(z,z′), which resembles Fig. 2, has been calculated for up

2Note that ρ(i,j )(z,z) = 0 for i �= j .
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to 160 particles, but the method of Ref. [47] can unfortunately
not be used for the calculation of the individual ρ(i,j )(z,z′).

Now, consider a spin configuration |χ〉, which is fully
symmetric under any permutation of the particle indices. Then,
in particular, P̂i,...,j |χ〉 = |χ〉 and ρ

(i,j )
m = 〈χ |(|m〉i〈m|i)|χ〉.

Moreover, 〈χ |(|m〉i〈m|i)|χ〉 = 〈χ |P̂i,j |m〉i〈m|i P̂i,j |χ〉 = 〈χ |
(|m〉j 〈m|j )|χ〉 and hence ρ

(i,j )
m = Nm/N , where Nm is the

number of particles in the mth spin component. Therefore,
we obtain ρ(B)

m (z,z′) = (Nm/N)ρ(B)(z,z′) for bosons and
ρ(F )

m (z,z′) = (Nm/N)ρ(F )(z,z′) for fermions. That is, the dis-
tributions have the same shape in all spin components and
equal those of spinless hard-core bosons and noninteracting
fermions, respectively.

Now, consider the opposite case of a fully antisymmet-
ric spin configuration |χ〉. Then, P̂i,...,j |χ〉 = (−1)i+j |χ〉,
since Pi,...,j = Pi,i+1Pi+1,i+2 · · · Pj−2,j−1Pj−1,j is a product
of j − i transpositions (assuming i < j ). Now, it follows that
ρ(B)

m (z,z′) = (Nm/N )ρ(F )(z,z′) for bosons and ρ(F )
m (z,z′) =

(Nm/N )ρ(B)(z,z′) for fermions. That is, bosons with a fully
antisymmetric spin function have a one-body density matrix
of spinless noninteracting fermions, and fermions with a fully
antisymmetric spin function have a one-body density matrix
of spinless hard-core bosons.

D. Spin-chain Hamiltonian

Finally, we discuss the Hamiltonian (1) in the limit of
large but finite g. In the limit g = ∞, the energy eigenvalues
of the system coincide with those of spinless noninteracting
fermions, but the degeneracy of each level is (2f + 1)N

times larger (f is the spin quantum number and 2f + 1 is
the number of spin components), which corresponds to the
number of the energetically degenerate spin configurations of
the noninteracting spin chain [15]. This is a direct consequence
of Eq. (2). This spin degeneracy is lifted in the limit of large but
finite g, since nearest-neighboring spins of the spin chain now
interact with each other through the spin Hamiltonian [28],

Hs =
(

EF −
N−1∑
i=1

Ji

)
1 ±

N−1∑
i=1

JiP̂i,i+1. (12)

This Hamiltonian acts only in spin space. Its eigenfunctions
|χ〉 may be mapped onto full wave functions |ψ〉 through
Eq. (2). In Eq. (12), EF is the ground-state energy of N spinless
noninteracting fermions,3 P̂i,i+1 permutes nearest-neighboring
spins, the + (−) sign applies to fermions (bosons), and [27,28]

Ji = N !�4

m2g

∫
dz1 · · · dzNδ(zi − zi+1)θ (z1, . . . ,zN )

∣∣∣∣∂ψF

∂zi

∣∣∣∣
2

(13)

are the local exchange coefficients of the interactions between
nearest-neighboring spins of the spin chain. The Ji are,
in a good approximation, proportional to the local density
cubed [28,35] or, equivalently, to the local pressure within

3Throughout this paper, we restrict the discussion to the ground-
state multiplet. The generalization to the excited motional states is
given in Ref. [35].

the noninteracting Fermi gas, p(z) = π2
�

2n3(z)/(3m) [17,18].
A high local pressure is accompanied by small spacings and
hence a large overlap between the wave packets of neighboring
particles (see Fig. 1), which results in large local exchange
coefficients. Moreover, the exchange coefficients and hence
the splitting of the energy levels are linearly dependent on
1/g. This means that the energy spectrum is inverted when a
confinement-induced resonance is crossed.

The exact calculation of the Ji is again difficult for large par-
ticle numbers due to the (N − 1)-dimensional integrals, which
have to be evaluated. Results for the Ji have been presented for
N � 15 [35,48] and N � 30 [49] particles in a harmonic trap.
Recently, Loft et al. published an efficient formula and released
an open source code [50] for the numerical computation of the
Ji for N � 35 particles in arbitrary confining potentials [51].
We show in Sec. IV C that this formula may be efficiently
calculated using a fit with Chebyshev polynomials. The
MATHEMATICA notebook containing this method and results
for up to 50 harmonically trapped particles is published in the
Supplemental Material [52].

Let us consider fermions [+ sign in Eq. (12)]. The energy
E = 〈χ |Hs |χ〉 is then minimized by a fully antisymmetric spin
function, i.e., P̂ |χ〉 = −|χ〉 for any permutation P , and as-
sumes the value E = EF − 2

∑N−1
i=1 Ji . A fully symmetric spin

function, i.e., P̂ |χ〉 = |χ〉 for any permutation P , maximizes
the energy, which assumes then the value E = EF . Addition-
ally, the symmetry of the full many-body wave function |ψ〉 re-
quires that the ground-state spin function |χ〉 of the fermions is
combined with a fully symmetric spatial wave function, while
the highest-excited state has to be combined with a fully anti-
symmetric one. The opposite result is obtained for bosons: A
fully symmetric spin function minimizes the energy of the spin
Hamiltonian Hs , while a fully antisymmetric one maximizes it.
However, Bose symmetry requires again that the ground-state
spin function has to be combined with a fully symmetric spatial
wave function, while the highest-excited spin function has to
be combined with a fully antisymmetric one. We conclude that
in both cases, the spatial part of the many-body ground state
|ψ〉 is fully symmetric under any permutation of particles.

If we have less spin components than particles available,
we cannot construct a fully antisymmetric spin function, since
every quantum number can at most appear once. The energy of
Hs is then minimized by the most antisymmetric spin function
in the case of fermions and we arrive at the conclusion that
now, in both cases (fermions and bosons), the spatial part of
the many-body ground state is most symmetric compared to
the excited states of the multiplet [53,54].

III. MOMENTUM AND OCCUPATION-NUMBER
DISTRIBUTIONS

The momentum and occupation-number distributions
of spinless bosons [47], spin-1 bosons [15], and spin-
balanced [16,48] or nearly spin-balanced [22,28] two-
component fermions have been calculated previously. Here,
we will study these distributions systematically as a function of
the spin imbalance, the B-field gradient, the excitation within
the multiplet, the length of the spin, and the symmetry of the
many-body wave function (fermions and bosons).
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We start by discussing the limiting distributions of spinless
noninteracting fermions and hard-core bosons. The momen-
tum distribution of spinless noninteracting fermions is flat and
broad, equals the density of noninteracting fermions in position
space, and is given by ρ(F )(k) = ∑N−1

i=0 φ2
i (k). By contrast, the

momentum distribution of spinless hard-core bosons features
a narrow peak at k = 0 [47]. This follows immediately from
Eqs. (7) and (9), which, at k = 0, become

ρ(B/F )(k = 0) = 1

2π

N∑
i,j=1

(±1)i+j

∫
dzdz′ρ(i,j )(z,z′). (14)

Clearly, since ρ(i,j )(z,z′) � 0 (see Fig. 2), the nonalternating
sum of the bosons leads to a larger value at k = 0 than
the alternating sum of the fermions. Moreover, there is a
significant probability that spinless hard-core bosons occupy
high-momentum states above the Fermi edge, while these
states are not occupied by spinless noninteracting fermions.
This follows from the fact that the wave function of hard-core
bosons exhibits symmetric cusps, ∝ |zi − zj |, while the wave
function of noninteracting fermions has antisymmetric zero
crossings, ∝ (zi − zj ), at equal particle positions, zi ≈ zj [47].

We conclude from these limiting cases that more symmetric
spatial wave functions lead to momentum distributions with
higher central peaks and more pronounced high-momentum
tails, while more antisymmetric spatial wave functions lead to
flatter momentum distributions and smaller high-momentum
tails. The momentum and occupation-number distributions are
hence a valuable measure of the symmetry of the spatial wave
function. Moreover, they are also a measure of the symmetry
of the spin function, since, e.g., a fully symmetric spatial wave
function of a bosonic (fermionic) system has to be combined
with a fully (anti)symmetric spin function [15].

Let us now turn to our results. Figure 3 shows the
momentum distributions (left column) of 16 spin-1/2 fermions
with infinite δ repulsion for an increasing spin imbalance
(from top to bottom). One sees that the number of oscillations
equals the number of particles occupying the spin component.
More precisely, the central distribution resembles that of
noninteracting fermions above a flat background, which
extends to high momenta. For example, in the spin-balanced
case, the eight noninteracting spin-up or spin-down particles
occupy the eight lowest levels of the spin-up or spin-down
component. Therefore, one sees the central distributions
ρ

(c)
↑,↓(k) ≈ ∑7

i=0 φ2
i (k) above a flat background. Note, however,

that the width of the central distributions ρ
(c)
↑,↓(k) is slightly

smaller than that of the distribution
∑7

i=0 φ2
i (k), while their

heights approximately coincide.
It is clear from this simple rule for the shape of the

momentum distribution that the width of the central distri-
bution of the majority component increases, while that of the
minority component decreases with increasing spin imbalance.
Moreover, it follows from this rule that the central distribution
of the spin-balanced system has a minimum width, i.e., it
cannot become as peaked as the momentum distribution of
spinless hard-core bosons. Finally, we note that the population
of the background of the majority particles is equally large for
all spin imbalances.
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FIG. 3. Effect of population imbalance. Left column: Momentum
distributions ρ↑(k) (solid blue line) and ρ↓(k) (dashed red line) of 16
spin-1/2 fermions with (N↑,N↓) = (8,8) (top) to (15,1) (bottom).
Right column: Occupation-number distributions ρ↑(n) (solid blue
line) and ρ↓(n) (dashed red line). l,n: length scale and quantum
number of the harmonic oscillator.

The occupation-number distribution of 16 spin-1/2
fermions as a function of an increasing spin imbalance is shown
in the right column of Fig. 3. It shows a similar dependence on
the population imbalance, although there is not such a simple
rule that describes its shape.

We now turn to the discussion of the effect of an increasing
B-field gradient, which is shown in Fig. 4. The top left
subfigure shows the momentum distribution of spin-balanced
spin-1/2 fermions. One sees that the momentum distribution
becomes broader and flatter with increasing B-field gradient,
while the high-momentum tails vanish. Overall, the momen-
tum distribution converges towards the distribution of spinless
fermions in the limit of a strong B-field gradient, which
indicates an almost antisymmetric spatial wave function.
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FIG. 4. Effect of magnetic field gradient. Top left: Momentum
distributions ρ(k) = ρ↑(k) + ρ↓(k) of 16 spin-balanced spin-1/2
fermions for G/J = 0 (dashed red line), 1 (dash-dotted blue line),
and 10 (solid black line). Top right: Occupation-number distributions
ρ(n) = ρ↑(n) + ρ↓(n) for G/J = 0 (dashed red line), 1.5 [light blue
(gray) line], 3 (dash-dotted blue line), and 10 (solid black line).
Thin dashed black lines: 16 spinless noninteracting fermions. Bottom
left: Momentum distributions of 16 spin-balanced spin-1/2 bosons
for G/J = 0 (dashed red line), 0.1 [light blue (gray) line], and 10
(solid black line). Bottom right: Occupation-number distributions for
G/J = 0 (dashed red line) and 10 (solid black line). G: strength
of B-field gradient; J = ∑N−1

i=1 Ji/(N − 1): mean value of local
exchange coefficients; l,n: length scale and quantum number of the
harmonic oscillator.

This behavior has two reasons: An increasing gradient
separates the two spin components until, finally, one com-
ponent is located left and one right from the trap center. The
restriction to only one-half of the trap volume squeezes the spin
components of the position-space density and hence broadens
the momentum distribution. Second, the spatial wave function
within the separated spin components must be antisymmetric.
Only at the boundary between the two components is the pair
of unlike spins in a superposition of a singlet and a triplet
spin state. Hence, only at the boundary does the spatial wave
function contain a symmetric contribution. This explains the
convergence of the momentum distribution towards that of
spinless noninteracting fermions. The spatial wave function of
a singlet of unlike spins exhibits symmetric cusps, ∝ |zi − zj |,
while the spatial wave function of a pair of particles with the
same spin has antisymmetric zero crossings, ∝ (zi − zj ), at
equal particle positions, zi ≈ zj [12]. The antiferromagnetic
ground state of spin-1/2 fermions in the absence of a B-field
gradient contains many pairs of unlike spins in a spin-singlet
state, but there is only one pair of neighboring unlike spins
at the boundary of the completely separated spin components.
This explains the disappearance of the background and the
high-momentum tails.

The occupation-number distribution of spin-1/2 fermions
(top right in Fig. 4) shows the same broadening and flattening
with increasing B-field gradient as the momentum distribution.
Again, the distribution approaches the limiting distribution of
spinless fermions, but it does not become completely equal to
it, which is a consequence of the more symmetric spatial wave
function at the boundary between the two spin components.

The momentum distribution of spin-balanced spin-1/2
hard-core bosons as a function of an increasing B-field
gradient is shown at the bottom left in Fig. 4. Again, one
sees a substantial flattening of the central distribution by
approximately 33%, but its broadening is not as strong as
for the fermions. By contrast, the demixing of the spin
components here has approximately no effect on the occupancy
of the high-momentum tails. Also, a convergence towards the
momentum distribution of spinless fermions is not present.

The reason for this different behavior is that the symmetry
of the spin function (and hence the spatial wave function) is
changed by a strong gradient in the case of fermions, while it is
not changed in the case of bosons. According to the discussion
in Sec. II D, the ground state of Eq. (12) is ferromagnetic
and has a fully symmetric spin function. After the application
of a B-field gradient, one obtains a state with separated spin
components, which is still ferromagnetic and fully symmetric
within each spin component. This state has hence (almost) the
same permutation symmetry as before (apart from the bound-
ary). In the initial state (zero gradient), two neighboring spins
form a triplet and hence their relative spatial wave function
exhibits symmetric cusps, ∝ |zi − zj |. In the final state (strong
gradient), a pair of like spins within the separated spin compo-
nents also forms a triplet and hence the relative spatial wave
function is not changed. Therefore, the symmetry of the spatial
wave function is not changed by a strong B-field gradient. This
explains the equally strong background in both cases. The mi-
nor broadening of the central peak is hence only caused by the
separation of the spin components, which restricts the position-
space densities of the two spin components to a smaller volume
and hence broadens their momentum distributions.

The occupation-number distribution of spin-balanced spin-
1/2 hard-core bosons for a vanishing (dashed red line) and
a strong (solid black line) B-field gradient is shown at the
bottom right in Fig. 4. First, we note the pronounced even-odd
effect in the mean population of the harmonic-trap levels
for a vanishing B-field gradient (dashed red line) [55]. This
may be viewed as a remnant of the mean-field behavior
of the bosons: Weakly interacting bosons occupy together
the mean-field ground state, which may be written as a
superposition of harmonic-oscillator states with even parity,
φMF(z) = c0φ0(z) + c2φ2(z) + c4φ4(z) + · · · . The mean-field
ground state of hard-core bosons is the square root of
the density of spinless noninteracting fermions, φMF(z) ≈√

ρ(z) [47,56]. This state with even parity is still much more
strongly populated (by

√
N bosons [47]) than the excited

natural orbitals [56], which explains the relatively strong
population of the harmonic-trap levels with even parity. This
parity effect is absent when a strong B-field gradient is applied
(solid black line), since the separated spin components are
located beside the trap center, and hence the parity symmetry
is broken. Apart from this parity effect, one sees again a
comparatively strong population of the n = 0 trap level for zero
gradients (dashed red line). This peak is again slightly flattened
and broadened when a strong B-field gradient is applied (solid
black line).

Next, we discuss the momentum and occupation-number
distributions of different states of the multiplet, shown in
Fig. 5. One sees in all cases that the ground states feature the
narrowest, most peaked central distribution and the strongest
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FIG. 5. Effect of increasing excitations. Top left: Momentum
distributions ρ(k) = ρ↑(k) + ρ↓(k) of 16 spin-balanced spin-1/2
fermions in the ground state (dashed red line), the 100th excited state
[light blue (gray) line], the 2000th excited state (dash-dotted blue
line), the 10 000th excited state (solid black line), and the highest-
excited state (thin dashed black line). Top right: Occupation-number
distributions ρ(n) = ρ↑(n) + ρ↓(n) of the ground state (dashed red
line), the 1000th excited state [light blue (gray) line], the 8000th
excited state (dash-dotted blue line), the 12 000th excited state (solid
black line), and the highest-excited state (thin dashed black line).
Bottom left: Momentum distributions of 16 spin-balanced spin-1/2
bosons in the ground state (dashed red line), the 30th excited state
[light blue (gray) line], the 700th excited state (dotted gray line),
the 10 000th excited state (dash-dotted blue line), and the highest-
excited state (solid black line). Bottom right: Occupation-number
distributions of the ground state (dashed red line), the 10 000th excited
state (dash-dotted blue line), and the highest-excited state (solid
black line). Thin dashed black lines (in all subfigures): 16 spinless
noninteracting fermions. l,n: length scale and quantum number of
the harmonic oscillator.

population of high-momentum and high-energy states. This
signals that the ground state always has the most symmetric
spatial wave function among the states of the multiplet [53,54],
in agreement with the discussion in Sec. II D. As a con-
sequence, the spin configuration of spin-1/2 fermions is
most antisymmetric (antiferromagnetic) and that of spin-1/2
bosons is fully symmetric (ferromagnetic). By contrast, the
highest-excited states of the multiplet always feature the
broadest and flattest central distribution. This means that the
highest-excited state of the multiplet always features the most
antisymmetric spatial wave function. As a consequence, the
spin configuration of spin-1/2 fermions is fully symmetric
(ferromagnetic) and that of spin-1/2 bosons is most antisym-
metric (antiferromagnetic). The other excited states interpolate
continuously between these two limiting cases. Therefore, also
in a large system, the antiferromagnetic states can be clearly
distinguished from the ferromagnetic states by means of their
momentum and occupation-number distributions.

Moreover, we note that the ground state of spin-1/2
fermions and the highest-excited state of spin-1/2 bosons
feature a momentum distribution that is approximately half as
broad as that of spinless fermions. The reason for that is that
in both cases, the spin function cannot be fully antisymmetric,
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FIG. 6. Effect of increasing particle spin. Left: Momentum
distributions ρ(k) = ∑

m ρm(k) of eight spin-balanced fermions in
the ground state and a particle spin of 1/2 (dashed red line), 3/2
(dash-dotted blue line), and 7/2 (solid black line). Right: The same
for eight spin-balanced bosons in the highest-excited state. l is the
harmonic-oscillator length.

which prevents the combination with a fully symmetric
(fermions) or antisymmetric (bosons) spatial wave function.

Finally, we discuss the dependence of the momentum
distribution on the particle spin, shown in Fig. 6. One sees that
the momentum distribution of the fermion ground state (left)
converges towards that of spinless hard-core bosons when the
length of the particle spin is increased [29,57]. The reason
for that is that spin-7/2 fermions have eight components.
Hence, one can construct a fully antisymmetric spin function
with eight spin-7/2 fermions. This spin function, which is
the ground state of the spin Hamiltonian (12), can then be
combined with a fully symmetric spatial wave function, which
features the momentum distribution of spinless hard-core
bosons.

By contrast, the momentum distribution of the highest-
excited state of the bosons (right) converges towards that
of spinless fermions when the length of the particle spin is
increased. Here, the fully antisymmetric spin function of eight
spin-7/2 bosons can be combined with a fully antisymmetric
spatial wave function, which features the momentum distribu-
tion of spinless fermions.

We conclude that the momentum distributions of strongly
interacting spinor fermions and bosons resemble those of
their noninteracting counterparts above a flat background,
which extends to high momenta. Furthermore, a change of
the permutation symmetry of the ground-state spin function,
induced by a B-field gradient or through spin excitations,
leads to a dramatic change of the momentum distribution. As
a result, the (anti)ferromagnetic spin order of large strongly
interacting multicomponent systems can clearly be identified
by means of their momentum distribution. This is impossible in
a Mott insulator and a Wigner crystal, since the momentum and
occupation-number distributions of strongly interacting spin-
less bosons and fermions are identical in these systems [46].

IV. NUMERICAL METHODS

We present in this section the numerical methods used to
calculate the single-particle densities, one-body density matrix
elements, and local exchange coefficients of large strongly
interacting 1D multicomponent systems. The implementation
of the formulas is given in the Supplemental Material [52].
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A. Single-particle densities

By evaluating the integral (5), we obtain, in a first step,

ρ(i)(z) = N !
∫

z1<···<zi−1<z<zi+1<···<zN

× dz1 · · · dzi−1dzi+1 · · · dzN

× |ψF (z1, . . . ,zi−1,z,zi+1, . . . ,zN )|2. (15)

This integral may be expressed by a combination of 1D
integrals using ψF = det[φi(zj )]i,j=1,...,N/

√
N ! and the sym-

metries of |ψF |2 (see Appendix B for the derivation),

ρ(i)(z) = (−1)i−1
N∑

j�k=1

(3δjk − 2)φj (z)φk(z)

×
N−1∑
l=i−1

(−1)l
(

l

i − 1

) ∑
p∈P (j,k,l)

det Ap(z). (16)

Here, P (j,j,l) is the set of all l-dimensional ordered subsets
of N \ {j} and P (j,k,l) is the set of all l-dimensional ordered
subsets of N \ {j}, which contain k. The matrix Ap is defined
by Ap = (Aij )i∈p,j∈p for p ∈ P (j,j,l) and Ap = (Aij )i∈p,j∈p

for p ∈ P (j,k,l), where p is obtained from p by replacing k

by j . The matrix elements Aij are given by the 1D integrals
Aij (z) = ∫ z

−∞ dx φi(x)φj (x) with the eigenfunctions φ1, φ2,
. . . of the external potential V . Additionally, we defined∑

p∈P (j,k,0) det Ap = δjk .
At first glance, it may seem that the computational costs

of evaluating Eq. (16) scale exponentially with N due to the
sums

Ak�m(z) := (−1)m
∑

p∈P (k,�,m)

det Ap(z) (17)

over permutations p, where Ak�0 = δk� and Ak�,N−1 = 0 for
k �= �. No matter the choice of N and i, however, individual
terms det Ap(z) never appear separately in Eq. (16). Instead, it
is sufficient to know the sums Ak�m(z) as a whole to obtain any
of the ρ(i)(z). The former can, in turn, be easily and efficiently
calculated numerically using the relation

Gz
k�(x) := (−1)k+�+δk�+N det〈(xAij )(z) − 1N 〉k�

=
N−1∑
m=0

xmAk�m(z), (18)

where 1N is the N -dimensional identity matrix and 〈·〉k�

denotes the matrix operation of deleting row k and column
�. Hence, Eq. (18) defines a generating function for exactly
those determinant sums Ak�m(z) = (m!)−1dmGz

k�(x)/dxm|x=0

needed to obtain ρ(i)(z). With Gz
k�(x), we get access to these

sums essentially by calculating the determinant of a single
(N − 1)-dimensional matrix per x.

It is easy to see that the absolute values of two terms
Ak�m(z) and Ak�m′(z) can differ by many orders of magni-
tude if |m − m′| � 1. Therefore, straightforward numerical
approaches, such as, e.g., using finite differences to evaluate
the higher-order derivatives of Gz

k�(x) at x = 0, are likely to
become numerically unstable for N larger than about 10.

Instead, we use Chebyshev polynomials of the first kind to
numerically obtain an expression of the right-hand side (r.h.s.)
of Eq. (18) by fitting a polynomial to the generating function
in the range x ∈ [−R,R], where parameter R � 1 allows
adjusting where in the range 1 � m � N the fit yields highest
accuracy. The fit method itself is a well-known, numerically
stable, and efficient procedure [58]. We just state the result
here, which is given by

Gz
k�(x) ≈ δk,� + 2

M

∑
p,q∈M

γp,qG
z
k�(1,q)Tp(x/R), (19)

with γp,q := cos[πp(2q − 1)/(2M)] and p,q := Rγp,q ,
where M � N and Tp(x) = cos[p arccos(x)] is the pth Cheby-
shev polynomial of the first kind. Note that while evaluating
Eq. (19) requires only M evaluations of G (one for each 1,q),
the resulting fit is valid (within some accuracy bound) for all
x ∈ [−R,R].

With the fit polynomial (19) given, the Ak�m(z) are then
approximated by

Ak�m(z) ≈ 2

MRm

∑
p,q∈M

cp,mγp,qG
z
k�(1,q) (20)

for l > 0. Here, cp,m denotes the mth-order coefficient of
Tp(x). This approximate relation becomes (analytically) exact
for M,R → ∞. For N � 30, however, it already yields results
with a relative precision of about 10−4 for M = N and
R = 2. Results of any desired (higher) accuracy (at higher
computational costs) can be obtained by performing separate
fits for multiple values of R, while checking for convergence
of the r.h.s. of Eq. (20) as a function of R and, to a lesser
extend, of M .

Depending on the number of particles and desired fit
accuracy, however, it might be additionally required to employ
a floating-point arithmetic that exceeds the native machine
precision (≈ 16 decimal digits for 64-bit floating point
numbers). For example, to obtain the density of 50 particles
with an (absolute) accuracy of 10−4, we had to increase the
floating-point precision to 60 decimal digits [52].

B. One-body density matrix elements

The evaluation of the matrix element (10) yields for i < j

the (N − 1)-dimensional integral

ρ(i,j )(z,z′) = N ! θ (z,z′)
∫

z1<···<zi−1<z<zi+1<···<zj <z′<zj+1<···<zN

dz1 · · · dzi−1dzi+1 · · · dzN

× |ψF (z1, . . . ,zi−1,z,zi+1, . . . ,zN )ψF (z1, . . . ,zi−1,z
′,zi+1, . . . ,zN )|. (21)
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Performing a similar calculation as in Appendix B, one finds, for i � j (see the Supplemental Material [52] for the derivation),

ρ(i,j )(z,z′) = θ (z,z′)
N∑

k,l=1

j−1∑
m=i−1

N−i∑
n=j−m−1

(2δk,l − 1)φk(z)φl(z
′)(−1)n

(
m

m + 1 − i

)(
n

j − m − 1

) ∑
p∈P (k,l,m,n)

det Ap(z,z′). (22)

Here, P (k,k,m,n) is the set of pairs of ordered m- and n-tuples
p = (i1, . . . ,im)(j1, . . . ,jn) with {i1, . . . ,im}, {j1, . . . ,jn} ⊂
N \ {k}, and {i1, . . . ,im} ∩ {j1, . . . ,jn} = ∅. p are the row
and column indices of Ap. (i1, . . . ,im) and (j1, . . . ,jn) are the
row indices of matrix elements Aij (z) and Aij (z′), respectively.
P (k,l,m,n) is the set of pairs of ordered m- and n-tuples
p = (i1, . . . ,im)(j1, . . . ,jn) with disjoint sets {i1, . . . ,im} and
{j1, . . . ,jn}, which contain elements of N \ {k,l} and where
one of the sets also contains the element l. The column indices
p are obtained from p by replacing l by k. Additionally,
we define

∑
p∈P (k,l,0,0) det Ap = δkl . Using the symmetry

ρ(i,j )(z,z′) = ρ(j,i)(z′,z), one may also calculate the matrix
elements with the indices i � j in the domain z > z′.

Similar to Sec. IV A, it is possible to define a generating
function Gzz′

k� (x,y) := ∑N−1
m,n=0 Ak�mn(z,z′)xmyn for the deter-

minant sums,

Ak�mn(z,z′) := (−1)m+n
∑

p∈P (k,�,m,n)

det Ap(z,z′), (23)

that appear in Eq. (22) and are essential to calculate ρ(i,j )(z,z′).
Just as the density matrix, this generating function depends on
two real parameters (x and y). It is given by

Gzz′
k� (x,y) = 1

1 + δk�

∑
α=1,2

det[A(x,y) − Iα], (24)

with block matrices

A(x,y) :=
(

〈(xAij )(z)〉k� 〈(xAij )(z)〉k�

〈(yAij )(z′)〉k� 〈(yAij )(z′)〉k�

)
(25)

and

Iα :=
(

〈1N + δα,1��,k〉k� 0

0 〈1N + δα,2��,k〉k�

)
, (26)

where matrix ��,k = (δi�δjk)i,j∈N has only one nonzero
element in row � and column k. Again, this generating function
can be effectively evaluated using a (two-dimensional) fit
based on Chebyshev polynomials [52]. This yields

Ak�mn(z,z′)

≈ 4

M2Rm+n

∑
λ,μ

α,β
∈M

cλ,mcμ,nγλ,αγμ,βGzz′
jk (1,α,1,β ) (27)

for m,n > 0. Furthermore, Ak�m0(z,z′) = Ak�m(z) and
Ak�0n(z,z′) = Ak�n(z′) as given by Eq. (20).

C. Exchange coefficients

The exchange coefficients may be efficiently calculated
using the formula [50]

Ji = (−1)N−i �
4

m2g

N∑
j�k=1

N−1−i∑
l=0

(2 − δjk)
(−1)j+k

l!

×
(

N − l − 2

i − 1

) ∫ +∞

−∞
dz[φ′′

j (z)φ′
k(z) + φ′

j (z)φ′′
k (z)]

×
[

∂l

∂λl
det 〈A(z) − λ1N 〉jk

]
λ=0

, (28)

with the N × N matrix A(z) = [Aij (z)]i,j=1,...,N , the N × N

identity matrix 1N , and 〈·〉jk denoting the matrix operation of
deleting the j th row and the kth column. We derive Eq. (28)
in Appendix C using a similar formula for the ρ(i)(z) [15,59].

The dth partial derivative terms of [A(z) − x1N ] can
be identified, up to a sign, with the determinant sums
Ak�,N−m−1(z) defined in (17) using the relation

∂k

∂xk
(M − x1M )

∣∣
x=0 = k!

(M − k)!

∂M−k

∂xM−k
(xM − 1M )

∣∣
x=0,

(29)

where M is an arbitrary matrix of dimension M . Hence, by
plugging (29) into (28), we arrive at

Ji = (−1)i�4

m2g

N∑
k��=1

N−1∑
d=i

(2 − 3δk�)

(
d − 1

i − 1

)

×
∫ ∞

−∞
dz[φ′′

k (z)φ′
�(z) + φ′

k(z)φ′′
� (z)]Ak�d(z). (30)

Just as with the particle density, we can employ approxima-
tion (20) to evaluate this equation efficiently [52].

V. SUMMARY

We calculated momentum and occupation-number distri-
butions of large systems of strongly interacting 1D spinor
gases in different regimes. We found that the momentum
distributions of strongly interacting spinor fermions and
bosons resemble those of their noninteracting counterparts
above a flat background. Furthermore, we found that the
momentum distributions change dramatically when the permu-
tation symmetry of the ground-state spin function is changed,
e.g., by a B-field gradient or by exciting the system. As
a result, (anti)ferromagnetic spin order of large strongly
interacting spinor gases can clearly be identified by means
of their momentum distributions. This should be contrasted
with Mott insulators or Wigner crystals, where the spin order
has no impact on the momentum distribution. Furthermore,
we presented efficient methods for the numerical calculation
of the spin-independent single-particle densities and one-body
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density matrix elements and the local exchange coefficients of
large systems of strongly interacting 1D spinor gases.
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APPENDIX A: DEFINITIONS

The action of a permutation operator P̂ on a many-body
state |α1, . . . ,αN 〉 is defined by

P̂ |α1, . . . ,αN 〉 = P̂ |α1〉1 · · · |αN 〉N
= |α1〉P (1) · · · |αN 〉P (N). (A1)

The action of P̂ on a spin function is hence given by

P̂ |m1, . . . ,mN 〉 = |m1〉P (1) · · · |mN 〉P (N)

= |mP −1(1)〉1 · · · |mP −1(N)〉N
= |mP −1(1), . . . ,mP −1(N)〉. (A2)

We use the cycle notation to specify a permutation. For
example, the permutation Pα,β,γ permutes the particle indices
according to the prescription α → β → γ → α. The identical

permutation is denoted by “id.” The loop permutation is
defined by

Pi,...,j =

⎧⎪⎨
⎪⎩

Pi,i+1,...,j−1,j for i < j

id for i = j

Pi,i−1,...,j+1,j for i > j.

(A3)

We define nonsymmetric spatial sector wave functions,

〈z1, . . . ,zN |P 〉 =
√

N ! θ (zP (1), . . . ,zP (N))|ψF |, (A4)

where θ (zP (1), . . . ,zP (N)) = 1 if zP (1) < · · · < zP (N), and zero
otherwise, and where ψF = det[φi(zj )]i,j=1,...,N/

√
N ! is the

ground-state Slater determinant of N spinless noninteracting
fermions with the eigenfunctions φ1(z), φ2(z), . . . of a single
particle in the external potential V (z). The sector wave
functions |P 〉 are therefore proportional to |ψF | in the sector
zP (1) < · · · < zP (N), and zero otherwise. The sector wave
function |id〉, defined in Eq. (3), is the special case belonging
to the identical permutation. The sector wave functions are
orthonormal, i.e., 〈P |P ′〉 = δP,P ′ . The action of a permutation
operator P̂ on a sector wave function |P ′〉 is given by

P̂ |P ′〉 = |P ◦ P ′〉. (A5)

This follows from

P̂

∫
dz1 · · · dzN |z1, . . . ,zN 〉〈z1, . . . ,zN |P ′〉

=
∫

dz1 · · · dzN |z1〉P (1) · · · |zN 〉P (N)

√
N ! θ (zP ′(1), . . . ,zP ′(N))|ψF | (A6a)

=
∫

dzP (1) · · · dzP (N)|zP (1)〉P (1) · · · |zP (N)〉P (N)

√
N ! θ (zP◦P ′(1), . . . ,zP◦P ′(N))|ψF | (A6b)

=
∫

dz1 · · · dzN |z1, . . . ,zN 〉
√

N ! θ (zP◦P ′(1), . . . ,zP◦P ′(N))|ψF | (A6c)

=
∫

dz1 · · · dzN |z1, . . . ,zN 〉〈z1, . . . ,zN |P ◦ P ′〉. (A6d)

The first step, given by Eq. (A6a), follows from the definitions (A1) and (A4); the second step, given by Eq. (A6b), follows
from the renaming z1 → zP (1), . . . zN → zP (N) and the fact that |ψF | is symmetric under any permutation of its arguments;
the third step, given by Eq. (A6c), follows from a change of the order of integration and of the kets in the tensor product
|zP (1)〉P (1) · · · |zP (N)〉P (N); and the last step follows again from the definition (A4).

The operator that measures the spin-independent density of the ith particle is defined by

ρ̂(i)(z) = |z〉i〈z|i =
∫

dz1 · · · dzNδ(z − zi)|z1, . . . ,zN 〉〈z1, . . . ,zN |. (A7)

The operator for the probability that the ith spin has magnetization m is defined by

ρ̂(i)
m = |m〉i〈m|i =

∑
m1,... ,mN

δm,mi
|m1, . . . ,mN 〉〈m1, . . . ,mN | . (A8)

The operator of the spin-independent one-body density matrix of the ith particle is defined by

ρ̂(i)(z,z′) = |z〉i〈z′|i =
∫

dz1 · · · dzi−1dzi+1 · · · dzN |z1, . . . ,zi−1,z,zi+1, . . . ,zN 〉〈z1, . . . ,zi−1,z
′,zi+1, . . . ,zN | . (A9)
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APPENDIX B: SINGLE-PARTICLE DENSITIES

Here, we derive Eq. (16) from Eq. (15). The calculation
resembles that of Ref. [59]. But first, we derive Eqs. (4)–(6).
The observable for measuring a particle at position z in the
mth spin component is given by

ρ̂m(z) =
N∑

i=1

|z,m〉i〈z,m|i =
N∑

i=1

ρ̂(i)(z)ρ̂(i)
m , (B1)

with ρ̂(i)(z) = |z〉i〈z|i the density of the ith particle and ρ̂(i)
m =

|m〉i〈m|i the probability that the ith spin has magnetization
m. The expectation value of ρ̂m(z) for a system being in state
|ψ〉 = √

N !S±|id〉|χ〉 is given by

〈ρ̂m(z)〉 = N !〈χ |〈id|ρ̂m(z)S±|id〉|χ〉 (B2a)

=
∑

i

∑
P

(±1)P 〈id|ρ̂(i)(z)|P 〉〈χ |ρ̂(i)
m (P̂ |χ〉) (B2b)

=
∑

i

〈id|ρ̂(i)(z)|id〉〈χ |ρ̂(i)
m |χ〉. (B2c)

Here, we used S
†
± = S±, S±ρ̂m(z) = ρ̂m(z)S±, and S2

± = S±
in the first step, given by Eq. (B2a); S± = (1/N!)

∑
P (±1)P P̂

and P̂ |id〉 = |P 〉 [see Eq. (A5)] in the second step, given by
Eq. (B2b); and the fact that different sector wave functions
have no overlap, 〈id|ρ̂(i)(z)|P 〉 = δid,P 〈id|ρ̂(i)(z)|id〉, in the last
step, given by Eq. (B2c). Using 〈id|ρ̂(i)(z)|id〉 = ρ(i)(z) and
〈χ |ρ̂(i)

m |χ〉 = ρ(i)
m , we obtain Eqs. (4)–(6).

Next, we decompose the (N − 1)-dimensional integral (15)
into (N − 1) 1D integrals. First, we extend the domain
of integration from z1 < · · · < zi−1 < z < zi+1 < · · · < zN

to z1, . . . ,zi−1 < z < zi+1, . . . ,zN . We can do this since
the integrand |ψF (z1, . . . ,zi−1,z,zi+1, . . . ,zN )|2 is symmetric
under any permutation of the first i − 1 variables z1, . . . ,zi−1

and the last N − i variables zi+1, . . . ,zN . We have to divide
by the factor (i − 1)!(N − i)! since the last volume is by
this factor larger than the first volume. We obtain, from
Eq. (15),

ρ(i)(z) = N !

(i − 1)!(N − i)!

∫ z

−∞
dz1 · · ·

∫ z

−∞
dzi−1

∫ ∞

z

dzi+1 · · ·
∫ ∞

z

dzN |ψF (z1, . . . ,zi−1,z,zi+1, . . . ,zN )|2. (B3)

Inserting the Leibniz formula for the Slater determinant,

ψF = 1√
N !

∑
P∈SN

(−1)P
N∏

i=1

φP (i)(zi), (B4)

we obtain

ρ(i)(z) = 1

(i − 1)!(N − i)!

∫ z

−∞
dz1 · · ·

∫ z

−∞
dzi−1

∫ ∞

z

dzi+1 · · ·
∫ ∞

z

dzN

∑
P∈SN

∑
P ′∈SN

(−1)P (−1)P
′

×φP (1)(z1)φP ′(1)(z1) · · · φP (i)(z)φP ′(i)(z) · · · φP (N)(zN )φP ′(N)(zN ), (B5)

and using the definitions

Aij (z) =
∫ z

−∞
dx φi(x)φj (x), (B6)

Bij (z) =
∫ ∞

z

dx φi(x)φj (x) = δij − Aij (z), (B7)

we get

ρ(i) = 1

(i − 1)!(N − i)!

∑
P,P ′

(−1)P (−1)P
′
AP (1),P ′(1) · · · AP (i−1),P ′(i−1)φP (i)φP ′(i)BP (i+1),P ′(i+1) · · · BP (N),P ′(N). (B8)

Note that we did not explicitly write out the z dependence of ρ(i), Aij , Bij , and φi . Next, we introduce the permutations P ′′,
defined by P ′ = P ′′ ◦ P , and sum over P and P ′′,

ρ(i) = 1

(i − 1)!(N − i)!

∑
P,P ′′

(−1)P
′′
AP (1),P ′′◦P (1) · · · AP (i−1),P ′′◦P (i−1)φP (i)φP ′′◦P (i)BP (i+1),P ′′◦P (i+1) · · · BP (N),P ′′◦P (N). (B9)

The order within the products of the A and B integrals is irrelevant. Hence, there are many equal terms in the above sum. In order
to unite these terms, instead of summing over P ∈ SN , we sum in the following over all decompositions J + K + L = N with
J = {P (1), . . . ,P (i − 1)}, K = {P (i)}, L = {P (i + 1), . . . ,P (N )}, and N = {1, . . . ,N}. Then, since the order within the sets
J and L is irrelevant, we have to multiply each term by (i − 1)!(N − i)! and obtain

ρ(i) =
∑
P ′′

∑
J+K+L=N

(−1)P
′′ ∏

j∈J

Aj,P ′′(j )

∏
k∈K

φkφP ′′(k)

∏
l∈L

Bl,P ′′(l). (B10)
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Now, we use Bij = δij − Aij to replace Bij . One finds∏
l∈L

Bl,P ′′(l) =
∑

M+Q=L

(−1)|L|+|M| ∏
q∈Q

Aq,P ′′(q). (B11)

Here, we sum over all decompositions M + Q = L, where all elements of M are mapped onto themselves by P ′′. Suppose P ′′
maps the elements 1 and 2 of L onto themselves. Then, we can build the sets M = ∅, {1}, {2}, and {1,2}. Using this, we obtain,
in the next step,

ρ(i) =
∑
P ′′

∑
J+K+M+Q=N

(−1)P
′′+|L|+|M| ∏

j∈J

Aj,P ′′(j )

∏
k∈K

φkφP ′′(k)

∏
q∈Q

Aq,P ′′(q). (B12)

Next, we join the sets J and Q to form the set R, J + Q = R, and sum over all decompositions K + M + R = N . There are(|R|
|J |

)
different decompositions of R into J and Q. Moreover, we use∑

P ′′∈SN

∑
K+M+R=N

· · · =
∑

K+M+R=N

∑
P ′′′∈SK+R

· · · (B13)

to obtain

ρ(i) =
∑

K+M+R=N

(−1)|L|+|M|
(|R|

|J |
) ∑

P ′′′∈SK+R

(−1)P
′′′ ∏

k∈K

φkφP ′′′(k)

∏
r∈R

Ar,P ′′′(r). (B14)

In the next step, we use that any permutation P ′′′ ∈ SK+R is either a composition of the form P ′′′ = idk ◦ P ′′′′ or P ′′′ = Pk,r ◦ P ′′′′,
where P ′′′′ ∈ SR , idk maps the element k ∈ K on itself, and Pk,r permutes the element k ∈ K with one element r ∈ R. Therefore,
we obtain

ρ(i) =
∑

K+M+R=N

(−1)|L|+|M|
(|R|

|J |
) ∏

k∈K

φk

{
φk

∑
P ′′′′∈SR

(−1)P
′′′′ ∏

r∈R

Ar,P ′′′′(r) −
∑
r∈R

φr

∑
P ′′′′∈SR

(−1)P
′′′′ ∏

s∈R

As,Pk,r◦P ′′′′(s)

}
. (B15)

Now, we want to sum over j ∈ K , k = r ∈ R, and l = |R|. Therefore, we express |L|, |M|, and |J | by i, j , k, l, and N . It follows
from the definitions of J and L that |J | = i − 1 and |L| = N − i. Moreover, |M| = N − 1 − l, since M = N \ (K + R), |K| = 1,
and |R| = l. Which values can j , k, and l assume? We can form the sets K = {1}, {2}, . . ., {N}, therefore j = 1, . . . ,N . K and R are
disjoint, K ∩ R = ∅, therefore k = 1, . . . ,N but k �= j . Finally, l = i − 1, . . . , N − 1 since l = |R| = |J | + |Q| = i − 1 + |Q|
and 0 � |Q| � |L| = N − i. We therefore obtain

ρ(i) = (−1)i−1
N∑

j=1

N−1∑
l=i−1

(−1)l
(

l

i − 1

)
φj

⎧⎨
⎩φj

∑
p∈P (j,j,l)

det Ap −
N∑

k �=j=1

φk

∑
p∈P (j,k,l)

det Ap

⎫⎬
⎭. (B16)

Here, we defined P (j,j,l) = (N \ {j})l , where (M)l is the set
of all l-dimensional ordered subsets of M , and P (j,k,l) =
{m + {k} with m ∈ (N \ {j,k})l−1}, i.e., P (j,k,l) is the set
of all l-dimensional ordered subsets of N \ {j} that contain
k. The matrix Ap is defined by Ap = (Aij )i∈p,j∈p for p ∈
P (j,j,l) and Ap = (Aij )i∈p,j∈p for p ∈ P (j,k,l), where p is
obtained from p by replacing k by j . Additionally, we define∑

p∈P (j,k,0) det Ap = δjk . Using the symmetry Aij = Aji , we
finally obtain Eq. (16).

APPENDIX C: EXCHANGE COEFFICIENTS

Here, we derive Eq. (28) from Eq. (13). We need for this
purpose another formula for the single-particle densities,

ρ(i)(z) =
N−i∑
k=0

(−1)N−i

k!

(
N − k − 1

i − 1

)

× d

dz

{
∂k

∂λk
det [A(z) − λ1N ]

}
λ=0

, (C1)

which is given in Ref. [15] and derived in Ref. [59]. Here,
A(z) = [Aij (z)]i,j=1,...,N and 1N is the N × N identity matrix.
By evaluating the integral (13), we obtain

Ji = N !�4

m2g

∫
z1<···<zi−1<zi+1<zi+2<···<zN

dz1 · · · dzi−1

× dzi+1dzi+2 · · · dzN

∣∣∣∣∂ψF

∂zi

∣∣∣∣
2

zi=zi+1

. (C2)

The integrand is symmetric under permutations of z1, . . . ,zi−1

and zi+2, . . . ,zN . Therefore, we can extend the domain of
integration to the domain z1, . . . ,zi−1 < zi+1 < zi+2, . . . ,zN ,
divide by the factor (i − 1)!(N − i − 1)!, and get

Ji = �
4N !

m2g(i − 1)!(N − i − 1)!

×
∫ +∞

−∞
dzi+1

∫ zi+1

−∞
dz1 · · ·

∫ zi+1

−∞
dzi−1

×
∫ +∞

zi+1

dzi+2 · · ·
∫ +∞

zi+1

dzN

∣∣∣∣∂ψF

∂zi

∣∣∣∣
2

zi=zi+1

. (C3)
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Using the Laplace expansion along the ith row of the Slater determinant ψF and the Leibniz formula for the minors,

ψF = 1√
N !

N∑
j=1

(−1)i+jφj (zi)
∑

P∈SN\{j}

(−1)P
i−1∏
k=1

φP (k)(zk)
N−1∏
k=i

φP (k)(zk+1), (C4)

we obtain (after renaming zN → zN−1 → · · · → zi+1 → zi)

Ji = �
4

m2g

N∑
j=1

N∑
k=1

(−1)j+k

∫ +∞

−∞
dzi φ

′
j (zi)φ

′
k(zi)

⎧⎨
⎩ 1

(i − 1)!(N − 1 − i)!

∫ zi

−∞
dz1 · · ·

∫ zi

−∞
dzi−1

×
∫ +∞

zi

dzi+1 · · ·
∫ +∞

zi

dzN−1

∑
P∈SN\{j}

∑
P ′∈SN\{k}

(−1)P (−1)P
′
N−1∏
l=1

φP (l)(zl)φP ′(l)(zl)

⎫⎬
⎭. (C5)

The term in the braces resembles the ith single-particle density ρ(i)(zi) of an (N − 1)-particle system; see Eq. (B5). We therefore
obtain, using Eq. (C1),

Ji = �
4

m2g

N∑
j=1

N∑
k=1

(−1)j+k

∫ +∞

−∞
dzi φ

′
j (zi)φ

′
k(zi)

N−1−i∑
l=0

(−1)N−1−i

l!

(
N − l − 2

i − 1

)
d

dzi

[
∂l

∂λl
det 〈A(zi) − λ1〉jk

]
λ=0

. (C6)

Here, A(z) = [Aij (z)]i,j=1,...,N , 1N is the N × N identity matrix, and 〈·〉jk denotes the matrix operation of deleting the j th row
and the kth column. After renaming zi → z, integrating by parts, and using the symmetry under the exchange j ↔ k, we obtain
Eq. (28).
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G. V. Shlyapnikov, T. W. Hänsch, and I. Bloch, Tonks-Girardeau
gas of ultracold atoms in an optical lattice, Nature (London) 429,
277 (2004).

[4] B. Laburthe-Tolra, K. M. O’Hara, J. H. Huckans, W. D. Phillips,
S. L. Rolston, and J. V. Porto, Observation of Reduced Three-
Body Recombination in a Correlated 1D Degenerate Bose Gas,
Phys. Rev. Lett. 92, 190401 (2004).

[5] T. Kinoshita, T. Wenger, and D. S. Weiss, Local Pair Correlations
in One-Dimensional Bose Gases, Phys. Rev. Lett. 95, 190406
(2005).

[6] T. Kinoshita, T. Wenger, and D. S. Weiss, A quantum Newton’s
cradle, Nature (London) 440, 900 (2006).

[7] S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D.
M. Stamper-Kurn, and W. Ketterle, Observation of Feshbach
resonances in a Bose-Einstein condensate, Nature (London) 392,
151 (1998).

[8] M. Olshanii, Atomic Scattering in the Presence of an External
Confinement and a Gas of Impenetrable Bosons, Phys. Rev. Lett.
81, 938 (1998).

[9] E. Haller, M. Gustavsson, M. J. Mark, J. G. Danzl, R. Hart, G.
Pupillo, and H.-C. Nägerl, Realization of an excited, strongly
correlated quantum gas phase, Science 325, 1224 (2009).

[10] G. E. Astrakharchik, J. Boronat, J. Casulleras, and S. Giorgini,
Beyond the Tonks-Girardeau Gas: Strongly Correlated Regime
in Quasi-One-Dimensional Bose Gases, Phys. Rev. Lett. 95,
190407 (2005).

[11] F. Serwane, G. Zürn, T. Lompe, T. B. Ottenstein, A. N. Wenz, and
S. Jochim, Deterministic preparation of a tunable Few-Fermion
system, Science 332, 336 (2011).

[12] G. Zürn, F. Serwane, T. Lompe, A. N. Wenz, M. G. Ries, J. E.
Bohn, and S. Jochim, Fermionization of Two Distinguishable
Fermions, Phys. Rev. Lett. 108, 075303 (2012).

[13] S. Franke-Arnold, S. M. Barnett, G. Huyet, and C. Sailliot,
Coherence properties of two trapped particles, Eur. Phys. J. D
22, 373 (2003).

[14] M. D. Girardeau and A. Minguzzi, Soluble Models of Strongly
Interacting Ultracold Gas Mixtures in Tight Waveguides, Phys.
Rev. Lett. 99, 230402 (2007).

[15] F. Deuretzbacher, K. Fredenhagen, D. Becker, K. Bongs, K.
Sengstock, and D. Pfannkuche, Exact Solution of Strongly
Interacting Quasi-One-Dimensional Spinor Bose Gases, Phys.
Rev. Lett. 100, 160405 (2008).

[16] L. Guan, S. Chen, Y. Wang, and Z.-Q. Ma, Exact Solution for
Infinitely Strongly Interacting Fermi Gases in Tight Waveguides,
Phys. Rev. Lett. 102, 160402 (2009).

[17] X.-W. Guan, M. T. Batchelor, and M. Takahashi, Ferromagnetic
behavior in the strongly interacting two-component Bose gas,
Phys. Rev. A 76, 043617 (2007).

[18] X.-W. Guan, M. T. Batchelor, and J.-Y. Lee, Magnetic ordering
and quantum statistical effects in strongly repulsive Fermi-
Fermi and Bose-Fermi mixtures, Phys. Rev. A 78, 023621
(2008).

[19] K. A. Matveev and A. Furusaki, Spectral Functions of Strongly
Interacting Isospin-1/2 Bosons in One Dimension, Phys. Rev.
Lett. 101, 170403 (2008).

[20] K. A. Matveev, Conductance of a Quantum Wire in
the Wigner-Crystal Regime, Phys. Rev. Lett. 92, 106801
(2004); Conductance of a quantum wire at low electron density,
Phys. Rev. B 70, 245319 (2004).

[21] S. E. Gharashi and D. Blume, Correlations of the Upper Branch
of 1D Harmonically Trapped Two-Component Fermi Gases,
Phys. Rev. Lett. 111, 045302 (2013).

[22] E. J. Lindgren, J. Rotureau, C. Forssén, A. G. Volosniev, and
N. T. Zinner, Fermionization of two-component few-fermion

023606-13

http://dx.doi.org/10.1063/1.1703687
http://dx.doi.org/10.1063/1.1703687
http://dx.doi.org/10.1063/1.1703687
http://dx.doi.org/10.1063/1.1703687
http://dx.doi.org/10.1126/science.1100700
http://dx.doi.org/10.1126/science.1100700
http://dx.doi.org/10.1126/science.1100700
http://dx.doi.org/10.1126/science.1100700
http://dx.doi.org/10.1038/nature02530
http://dx.doi.org/10.1038/nature02530
http://dx.doi.org/10.1038/nature02530
http://dx.doi.org/10.1038/nature02530
http://dx.doi.org/10.1103/PhysRevLett.92.190401
http://dx.doi.org/10.1103/PhysRevLett.92.190401
http://dx.doi.org/10.1103/PhysRevLett.92.190401
http://dx.doi.org/10.1103/PhysRevLett.92.190401
http://dx.doi.org/10.1103/PhysRevLett.95.190406
http://dx.doi.org/10.1103/PhysRevLett.95.190406
http://dx.doi.org/10.1103/PhysRevLett.95.190406
http://dx.doi.org/10.1103/PhysRevLett.95.190406
http://dx.doi.org/10.1038/nature04693
http://dx.doi.org/10.1038/nature04693
http://dx.doi.org/10.1038/nature04693
http://dx.doi.org/10.1038/nature04693
http://dx.doi.org/10.1038/32354
http://dx.doi.org/10.1038/32354
http://dx.doi.org/10.1038/32354
http://dx.doi.org/10.1038/32354
http://dx.doi.org/10.1103/PhysRevLett.81.938
http://dx.doi.org/10.1103/PhysRevLett.81.938
http://dx.doi.org/10.1103/PhysRevLett.81.938
http://dx.doi.org/10.1103/PhysRevLett.81.938
http://dx.doi.org/10.1126/science.1175850
http://dx.doi.org/10.1126/science.1175850
http://dx.doi.org/10.1126/science.1175850
http://dx.doi.org/10.1126/science.1175850
http://dx.doi.org/10.1103/PhysRevLett.95.190407
http://dx.doi.org/10.1103/PhysRevLett.95.190407
http://dx.doi.org/10.1103/PhysRevLett.95.190407
http://dx.doi.org/10.1103/PhysRevLett.95.190407
http://dx.doi.org/10.1126/science.1201351
http://dx.doi.org/10.1126/science.1201351
http://dx.doi.org/10.1126/science.1201351
http://dx.doi.org/10.1126/science.1201351
http://dx.doi.org/10.1103/PhysRevLett.108.075303
http://dx.doi.org/10.1103/PhysRevLett.108.075303
http://dx.doi.org/10.1103/PhysRevLett.108.075303
http://dx.doi.org/10.1103/PhysRevLett.108.075303
http://dx.doi.org/10.1140/epjd/e2003-00036-6
http://dx.doi.org/10.1140/epjd/e2003-00036-6
http://dx.doi.org/10.1140/epjd/e2003-00036-6
http://dx.doi.org/10.1140/epjd/e2003-00036-6
http://dx.doi.org/10.1103/PhysRevLett.99.230402
http://dx.doi.org/10.1103/PhysRevLett.99.230402
http://dx.doi.org/10.1103/PhysRevLett.99.230402
http://dx.doi.org/10.1103/PhysRevLett.99.230402
http://dx.doi.org/10.1103/PhysRevLett.100.160405
http://dx.doi.org/10.1103/PhysRevLett.100.160405
http://dx.doi.org/10.1103/PhysRevLett.100.160405
http://dx.doi.org/10.1103/PhysRevLett.100.160405
http://dx.doi.org/10.1103/PhysRevLett.102.160402
http://dx.doi.org/10.1103/PhysRevLett.102.160402
http://dx.doi.org/10.1103/PhysRevLett.102.160402
http://dx.doi.org/10.1103/PhysRevLett.102.160402
http://dx.doi.org/10.1103/PhysRevA.76.043617
http://dx.doi.org/10.1103/PhysRevA.76.043617
http://dx.doi.org/10.1103/PhysRevA.76.043617
http://dx.doi.org/10.1103/PhysRevA.76.043617
http://dx.doi.org/10.1103/PhysRevA.78.023621
http://dx.doi.org/10.1103/PhysRevA.78.023621
http://dx.doi.org/10.1103/PhysRevA.78.023621
http://dx.doi.org/10.1103/PhysRevA.78.023621
http://dx.doi.org/10.1103/PhysRevLett.101.170403
http://dx.doi.org/10.1103/PhysRevLett.101.170403
http://dx.doi.org/10.1103/PhysRevLett.101.170403
http://dx.doi.org/10.1103/PhysRevLett.101.170403
http://dx.doi.org/10.1103/PhysRevLett.92.106801
http://dx.doi.org/10.1103/PhysRevLett.92.106801
http://dx.doi.org/10.1103/PhysRevLett.92.106801
http://dx.doi.org/10.1103/PhysRevLett.92.106801
http://dx.doi.org/10.1103/PhysRevB.70.245319
http://dx.doi.org/10.1103/PhysRevB.70.245319
http://dx.doi.org/10.1103/PhysRevB.70.245319
http://dx.doi.org/10.1103/PhysRevB.70.245319
http://dx.doi.org/10.1103/PhysRevLett.111.045302
http://dx.doi.org/10.1103/PhysRevLett.111.045302
http://dx.doi.org/10.1103/PhysRevLett.111.045302
http://dx.doi.org/10.1103/PhysRevLett.111.045302


F. DEURETZBACHER, D. BECKER, AND L. SANTOS PHYSICAL REVIEW A 94, 023606 (2016)

systems in a one-dimensional harmonic trap, New J. Phys. 16,
063003 (2014).

[23] P. O. Bugnion and G. J. Conduit, Ferromagnetic spin correlations
in a few-fermion system, Phys. Rev. A 87, 060502(R) (2013).
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