675 research outputs found

    Applied analytical combustion/emissions research at the NASA Lewis Research Center

    Get PDF
    Emissions of pollutants from future commercial transports are a significant concern. As a result, the Lewis Research Center (LeRC) is investigating various low emission combustor technologies. As part of this effort, a combustor analysis code development program was pursued to guide the combustor design process, to identify concepts having the greatest promise, and to optimize them at the lowest cost in the minimum time

    Spin Sum Rules and the Strong Coupling Constant at large distance

    Full text link
    We present recent results on the Bjorken and the generalized forward spin polarizability sum rules from Jefferson Lab Hall A and CLAS experiments, focusing on the low Q2Q^2 part of the measurements. We then discuss the comparison of these results with Chiral Perturbation theory calculations. In the second part of this paper, we show how the Bjorken sum rule with its connection to the Gerasimov-Drell-Hearn sum, allows us to conveniently define an effective coupling for the strong force at all distances.Comment: Contribution to proceedings for the Workshop on Spin Structure at Long Distance (Newport News, March 2009

    Sum Rules and Moments of the Nucleon Spin Structure Functions

    Full text link
    The nucleon has been used as a laboratory to investigate its own spin structure and Quantum Chromodynamics. New experimental data on nucleon spin structure at low to intermediate momentum transfers combined with existing high momentum transfer data offer a comprehensive picture of the transition region from the {\it confinement} regime of the theory to its {\it asymptotic freedom} regime. Insight for some aspects of the theory is gained by exploring lower moments of spin structure functions and their corresponding sum rules (i.e. the Gerasimov-Drell-Hearn, Bjorken and Burkhardt-Cottingham). These moments are expressed in terms of an operator product expansion using quark and gluon degrees of freedom at moderately large momentum transfers. The sum rules are verified to a good accuracy assuming that no singular behavior of the structure functions is present at very high excitation energies. The higher twist contributions have been examined through the moments evolution as the moments evolution as the momentum transfer varies from higher to lower values. Furthermore, QCD-inspired low-energy effective theories, which explicitly include chiral symmetry breaking, are tested at low momentum transfers. The validity of these theories is further examined as the momentum transfer increases to moderate values. It is found that chiral perturbation calculations agree reasonably well with the first moment of the spin structure function g1g_1 at momentum transfer of 0.1 GeV2^2 but fail to reproduce the neutron data in the case of the generalized polarizability δLT\delta_{LT}.Comment: 21 pages, 4 figures, review for Modern Physics Letters A. Minor modifications in text and improved quality for one figure. Corrected mistakes in section

    Nonperturbative QCD Coupling and its β\beta function from Light-Front Holography

    Full text link
    The light-front holographic mapping of classical gravity in AdS space, modified by a positive-sign dilaton background, leads to a nonperturbative effective coupling αsAdS(Q2)\alpha_s^{AdS}(Q^2). It agrees with hadron physics data extracted from different observables, such as the effective charge defined by the Bjorken sum rule, as well as with the predictions of models with built-in confinement and lattice simulations. It also displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale ∼1 \sim 1 GeV. The resulting β\beta function appears to capture the essential characteristics of the full β\beta function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD. Commensurate scale relations relate observables to each other without scheme or scale ambiguity. In this paper we extrapolate these relations to the nonperturbative domain, thus extending the range of predictions based on αsAdS(Q2)\alpha_s^{AdS}(Q^2).Comment: 32 pages, 7 figures. Final version published in Phys. Rev.

    Estimates for parameters and characteristics of the confining SU(3)-gluonic field in neutral kaons and chiral limit for pseudoscalar nonet

    Full text link
    First part of the paper is devoted to applying the confinement mechanism proposed earlier by the author to estimate the possible parameters of the confining SU(3)-gluonic field in neutral kaons. The estimates obtained are consistent with the widths of the electromagnetic decays K0,Kˉ0→2γK^0,\bar{K}^0\to2\gamma too. The corresponding estimates of the gluon concentrations, electric and magnetic colour field strengths are also adduced for the mentioned field at the scales of the mesons under consideration. The second part of the paper takes into account the results obtained previously by the author to estimate the purely gluonic contribution to the masses of all the mesons of pseudoscalar nonet and also to consider a possible relation with a phenomenological string-like picture of confinement. Finally, the problem of masses in particle physics is shortly discussed within the framework of approach to the chiral symmetry breaking in quantum chromodynamics (QCD) proposed recently by the author.Comment: LaTeX, 16 pages, 2 figure

    Analysis of Lean Premixed/Prevaporized Combustion with KIVA-2

    Get PDF
    Requirements to reduce the emissions of pollutants from gas turbines used in aircraft propulsion and ground based power generation have led to consideration of lean premixed/prevaporized (LPP) combustion concept. This paper describes some of the LPP flame tube analyses performed at the NASA Research Center with KIVA-2, a well-known multi-dimensional CFD code for problems including sprays, turbulence, and combustion. Modifications to KIVA-2's boundary condition and chemistry treatments have been made to meet the needs of the present study. The study itself focuses on two key aspects of the LPP concept, low emissions and flame stability (including flashback and lean blowoff

    An ABS control logic based on wheel force measurement

    Get PDF
    The paper presents an anti-lock braking system (ABS) control logic based on the measurement of the longitudinal forces at the hub bearings. The availability of force information allows to design a logic that does not rely on the estimation of the tyre-road friction coefficient, since it continuously tries to exploit the maximum longitudinal tyre force. The logic is designed by means of computer simulation and then tested on a specific hardware in the loop test bench: the experimental results confirm that measured wheel force can lead to a significant improvement of the ABS performances in terms of stopping distance also in the presence of road with variable friction coefficien

    Chiral phase boundary of QCD at finite temperature

    Full text link
    We analyze the approach to chiral symmetry breaking in QCD at finite temperature, using the functional renormalization group. We compute the running gauge coupling in QCD for all temperatures and scales within a simple truncated renormalization flow. At finite temperature, the coupling is governed by a fixed point of the 3-dimensional theory for scales smaller than the corresponding temperature. Chiral symmetry breaking is approached if the running coupling drives the quark sector to criticality. We quantitatively determine the phase boundary in the plane of temperature and number of flavors and find good agreement with lattice results. As a generic and testable prediction, we observe that our underlying IR fixed-point scenario leaves its imprint in the shape of the phase boundary near the critical flavor number: here, the scaling of the critical temperature is determined by the zero-temperature IR critical exponent of the running coupling.Comment: 39 pages, 8 figure
    • …
    corecore