116 research outputs found

    Disability Dimensions: Course, Risk and Mortality Salience Predict Workplace Bias

    Get PDF
    The current study explored the course, risk and mortality salience of a specific disability (N=242). Four job candidates were presented with varying forms of that disability; yet the results indicated ratings of work-related variables changed depending upon perceived dimensions (course and risk) of the candidates’ disability. Furthermore, findings demonstrated a difference in perceived trainability and absenteeism when mortality was made salient. Implications reveal the potential importance of using a dimensional approach to studying individuals with a disability and relevant consequences for organizations when the course, risk or mortality of the disability is made salient

    Spheres and Prolate and Oblate Ellipsoids from an Analytical Solution of Spontaneous Curvature Fluid Membrane Model

    Full text link
    An analytic solution for Helfrich spontaneous curvature membrane model (H. Naito, M.Okuda and Ou-Yang Zhong-Can, Phys. Rev. E {\bf 48}, 2304 (1993); {\bf 54}, 2816 (1996)), which has a conspicuous feature of representing the circular biconcave shape, is studied. Results show that the solution in fact describes a family of shapes, which can be classified as: i) the flat plane (trivial case), ii) the sphere, iii) the prolate ellipsoid, iv) the capped cylinder, v) the oblate ellipsoid, vi) the circular biconcave shape, vii) the self-intersecting inverted circular biconcave shape, and viii) the self-intersecting nodoidlike cylinder. Among the closed shapes (ii)-(vii), a circular biconcave shape is the one with the minimum of local curvature energy.Comment: 11 pages, 11 figures. Phys. Rev. E (to appear in Sept. 1999

    Axially symmetric membranes with polar tethers

    Full text link
    Axially symmetric equilibrium configurations of the conformally invariant Willmore energy are shown to satisfy an equation that is two orders lower in derivatives of the embedding functions than the equilibrium shape equation, not one as would be expected on the basis of axial symmetry. Modulo a translation along the axis, this equation involves a single free parameter c.If c\ne 0, a geometry with spherical topology will possess curvature singularities at its poles. The physical origin of the singularity is identified by examining the Noether charge associated with the translational invariance of the energy; it is consistent with an external axial force acting at the poles. A one-parameter family of exact solutions displaying a discocyte to stomatocyte transition is described.Comment: 13 pages, extended and revised version of Non-local sine-Gordon equation for the shape of axi-symmetric membrane

    Area-Constrained Planar Elastica

    Get PDF
    We determine the equilibria of a rigid loop in the plane, subject to the constraints of fixed length and fixed enclosed area. Rigidity is characterized by an energy functional quadratic in the curvature of the loop. We find that the area constraint gives rise to equilibria with remarkable geometrical properties: not only can the Euler-Lagrange equation be integrated to provide a quadrature for the curvature but, in addition, the embedding itself can be expressed as a local function of the curvature. The configuration space is shown to be essentially one-dimensional, with surprisingly rich structure. Distinct branches of integer-indexed equilibria exhibit self-intersections and bifurcations -- a gallery of plots is provided to highlight these findings. Perturbations connecting equilibria are shown to satisfy a first order ODE which is readily solved. We also obtain analytical expressions for the energy as a function of the area in some limiting regimes.Comment: 23 pages, several figures. Version 2: New title. Changes in the introduction, addition of a new section with conclusions. Figure 14 corrected and one reference added. Version to appear in PR

    Hamilton's equations for a fluid membrane: axial symmetry

    Full text link
    Consider a homogenous fluid membrane, or vesicle, described by the Helfrich-Canham energy, quadratic in the mean curvature. When the membrane is axially symmetric, this energy can be viewed as an `action' describing the motion of a particle; the contours of equilibrium geometries are identified with particle trajectories. A novel Hamiltonian formulation of the problem is presented which exhibits the following two features: {\it (i)} the second derivatives appearing in the action through the mean curvature are accommodated in a natural phase space; {\it (ii)} the intrinsic freedom associated with the choice of evolution parameter along the contour is preserved. As a result, the phase space involves momenta conjugate not only to the particle position but also to its velocity, and there are constraints on the phase space variables. This formulation provides the groundwork for a field theoretical generalization to arbitrary configurations, with the particle replaced by a loop in space.Comment: 11 page

    Numerical observation of non-axisymmetric vesicles in fluid membranes

    Full text link
    By means of Surface Evolver (Exp. Math,1,141 1992), a software package of brute-force energy minimization over a triangulated surface developed by the geometry center of University of Minnesota, we have numerically searched the non-axisymmetric shapes under the Helfrich spontaneous curvature (SC) energy model. We show for the first time there are abundant mechanically stable non-axisymmetric vesicles in SC model, including regular ones with intrinsic geometric symmetry and complex irregular ones. We report in this paper several interesting shapes including a corniculate shape with six corns, a quadri-concave shape, a shape resembling sickle cells, and a shape resembling acanthocytes. As far as we know, these shapes have not been theoretically obtained by any curvature model before. In addition, the role of the spontaneous curvature in the formation of irregular crenated vesicles has been studied. The results shows a positive spontaneous curvature may be a necessary condition to keep an irregular crenated shape being mechanically stable.Comment: RevTex, 14 pages. A hard copy of 8 figures is available on reques

    Phase ordering and shape deformation of two-phase membranes

    Full text link
    Within a coupled-field Ginzburg-Landau model we study analytically phase separation and accompanying shape deformation on a two-phase elastic membrane in simple geometries such as cylinders, spheres and tori. Using an exact periodic domain wall solution we solve for the shape and phase ordering field, and estimate the degree of deformation of the membrane. The results are pertinent to a preferential phase separation in regions of differing curvature on a variety of vesicles.Comment: 4 pages, submitted to PR

    Formation and Interaction of Membrane Tubes

    Full text link
    We show that the formation of membrane tubes (or membrane tethers), which is a crucial step in many biological processes, is highly non-trivial and involves first order shape transitions. The force exerted by an emerging tube is a non-monotonic function of its length. We point out that tubes attract each other, which eventually leads to their coalescence. We also show that detached tubes behave like semiflexible filaments with a rather short persistence length. We suggest that these properties play an important role in the formation and structure of tubular organelles.Comment: 4 pages, 3 figure

    Well-posedness of Hydrodynamics on the Moving Elastic Surface

    Full text link
    The dynamics of a membrane is a coupled system comprising a moving elastic surface and an incompressible membrane fluid. We will consider a reduced elastic surface model, which involves the evolution equations of the moving surface, the dynamic equations of the two-dimensional fluid, and the incompressible equation, all of which operate within a curved geometry. In this paper, we prove the local existence and uniqueness of the solution to the reduced elastic surface model by reformulating the model into a new system in the isothermal coordinates. One major difficulty is that of constructing an appropriate iterative scheme such that the limit system is consistent with the original system.Comment: The introduction is rewritte

    Impermeability effects in three-dimensional vesicles

    Full text link
    We analyse the effects that the impermeability constraint induces on the equilibrium shapes of a three-dimensional vesicle hosting a rigid inclusion. A given alteration of the inclusion and/or vesicle parameters leads to shape modifications of different orders of magnitude, when applied to permeable or impermeable vesicles. Moreover, the enclosed-volume constraint wrecks the uniqueness of stationary equilibrium shapes, and gives rise to pear-shaped or stomatocyte-like vesicles.Comment: 16 pages, 7 figure
    corecore