72 research outputs found

    Macrolides: The Plug Is Out

    Get PDF
    Macrolide antibiotics are thought to clog up the ribosomal tunnel and thereby block general protein synthesis. By using a combination of elegant in vivo and in vitro approaches, Kannan et al. show that the inhibitory action of these drugs on bacterial protein synthesis is selective rather than global

    Fluorescence-based monitoring of ribosome assembly landscapes

    Get PDF
    Background Ribosomes and functional complexes of them have been analyzed at the atomic level. Far less is known about the dynamic assembly and degradation events that define the half-life of ribosomes and guarantee their quality control. Results We developed a system that allows visualization of intact ribosomal subunits and assembly intermediates (i.e. assembly landscapes) by convenient fluorescence-based analysis. To this end, we labeled the early assembly ribosomal proteins L1 and S15 with the fluorescent proteins mAzami green and mCherry, respectively, using chromosomal gene insertion. The reporter strain harbors fluorescently labeled ribosomal subunits that operate wild type-like, as shown by biochemical and growth assays. Using genetic and chemical perturbations by depleting genes encoding the ribosomal proteins L3 and S17, respectively, or using ribosome-targeting antibiotics, we provoked ribosomal subunit assembly defects. These defects were readily identified by fluorometric analysis after sucrose density centrifugation in unprecedented resolution. Conclusion This strategy is useful to monitor and characterize subunit specific assembly defects caused by ribosome-targeting drugs that are currently used and to characterize new molecules that affect ribosome assembly and thereby constitute new classes of antibacterial agents

    Directed PCR-free engineering of highly repetitive DNA sequences

    Get PDF
    Background: Highly repetitive nucleotide sequences are commonly found in nature e.g. in telomeres, microsatellite DNA, polyadenine (poly(A)) tails of eukaryotic messenger RNA as well as in several inherited human disorders linked to trinucleotide repeat expansions in the genome. Therefore, studying repetitive sequences is of biological, biotechnological and medical relevance. However, cloning of such repetitive DNA sequences is challenging because specific PCR-based amplification is hampered by the lack of unique primer binding sites resulting in unspecific products.Results: For the PCR-free generation of repetitive DNA sequences we used antiparallel oligonucleotides flanked byrestriction sites of Type IIS endonucleases. The arrangement of recognition sites allowed for stepwise and seamless elongation of repetitive sequences. This facilitated the assembly of repetitive DNA segments and open reading frames encoding polypeptides with periodic amino acid sequences of any desired length. By this strategy wecloned a series of polyglutamine encoding sequences as well as highly repetitive polyadenine tracts. Such repetitive sequences can be used for diverse biotechnological applications. As an example, the polyglutamine sequences were expressed as His6-SUMO fusion proteins in Escherichia coli cells to study their aggregation behavior in vitro. The His6-SUMO moiety enabled affinity purification of the polyglutamine proteins, increased their solubility, and allowed controlled induction of the aggregation process. We successfully purified the fusions proteins and provide an example for their applicability in filter retardation assays.Conclusion: Our seamless cloning strategy is PCR-free and allows the directed and efficient generation of highlyrepetitive DNA sequences of defined lengths by simple standard cloning procedures

    Extra N-Terminal Residues Have a Profound Effect on the Aggregation Properties of the Potential Yeast Prion Protein Mca1

    Get PDF
    The metacaspase Mca1 from Saccharomyces cerevisiae displays a Q/N-rich region at its N-terminus reminiscent of yeast prion proteins. In this study, we show that the ability of Mca1 to form insoluble aggregates is modulated by a peptide stretch preceding its putative prion-forming domain. Based on its genomic locus, three potential translational start sites of Mca1 can give rise to two slightly different long Mca1 proteins or a short version, Mca1451/453 and Mca1432, respectively, although under normal physiological conditions Mca1432 is the predominant form expressed. All Mca1 variants exhibit the Q/N-rich regions, while only the long variants Mca1451/453 share an extra stretch of 19 amino acids at their N-terminal end. Strikingly, only long versions of Mca1 but not Mca1432 revealed pronounced aggregation in vivo and displayed prion-like properties when fused to the C-terminal domain of Sup35 suggesting that the N-terminal peptide element promotes the conformational switch of Mca1 protein into an insoluble state. Transfer of the 19 N-terminal amino acid stretch of Mca1451 to the N-terminus of firefly luciferase resulted in increased aggregation of luciferase, suggesting a protein destabilizing function of the peptide element. We conclude that the aggregation propensity of the potential yeast prion protein Mca1 in vivo is strongly accelerated by a short peptide segment preceding its Q/N-rich region and we speculate that such a conformational switch might occur in vivo via the usage of alternative translational start sites

    Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The overproduction of recombinant proteins in host cells often leads to their misfolding and aggregation. Previous attempts to increase the solubility of recombinant proteins by co-overproduction of individual chaperones were only partially successful. We now assessed the effects of combined overproduction of the functionally cooperating chaperone network of the <it>E. coli </it>cytosol on the solubility of recombinant proteins.</p> <p>Results</p> <p>A two-step procedure was found to show the strongest enhancement of solubility. In a first step, the four chaperone systems GroEL/GroES, DnaK/DnaJ/GrpE, ClpB and the small HSPs IbpA/IbpB, were coordinately co-overproduced with recombinant proteins to optimize <it>de novo </it>folding. In a second step, protein biosynthesis was inhibited to permit chaperone mediated refolding of misfolded and aggregated proteins <it>in vivo</it>. This novel strategy increased the solubility of 70% of 64 different heterologous proteins tested up to 42-fold.</p> <p>Conclusion</p> <p>The engineered <it>E. coli </it>strains and the two-step procedure presented here led to a remarkable increase in the solubility of a various recombinant proteins and should be applicable to a wide range of target proteins produced in biotechnology.</p

    Three-state equilibrium of Escherichia coli trigger factor

    Get PDF
    Trigger Factor (TF) is the first chaperone that interacts with nascent chains of cytosolic proteins in Escherichia coli. Although its chaperone activity requires association with ribosomes, TF is present in vivo in a 2 -3 fold molar excess over ribosomes and a fraction of it is not ribosome-associated after cell lysis. Here we show that TF follows a three-state equilibrium. Size exclusion chromatography, crosslinking and analytical ultracentrifugation revealed that uncomplexed TF dimerizes with an apparent K d of 18 µM. Dimerization is mediated by the N-terminal ribosome binding domain and the C-terminal domain of TF, whereas the central peptidyl prolyl isomerase (PPIase) and substrate binding domain does not contribute to dimerization. Crosslinking experiments showed that TF is monomeric in its ribosome-associated state. Quantitative analysis of TF binding to ribosomes revealed a dissociation constant for the TF-ribosome complex of approximately 1.2 µM. From these data we estimate that in vivo most of the ribosomes are in complex with monomeric TF. Uncomplexed TF, however, is in a monomer-dimer equilibrium with approximately two thirds of TF existing in a dimeric state

    Fluorosomen werfen Licht auf Ribosomenproduktion

    No full text

    Trigger factor flexibility

    No full text
    Molecular chaperones are found in all cells and are essential for maintaining a functional proteome. The main function of chaperones is to promote correct protein folding by protecting non-native proteins from folding along pathways that lead to protein misfolding and aggregation. To fulfill this task, chaperones must recognize a non-native protein, transiently bind to it, and then release it at precisely the right time to allow the substrate to proceed with its folding course. Many but not all chaperones use adenosine 5'-triphosphate (ATP) to control the dynamic substrate binding and release cycle (1). On page 597 of this issue, Saio et al. (2) unravel the structural basis and underlying mechanism of action of the ATP-independent chaperone trigger factor (TF)

    Chaperone-assisted folding of newly synthesized proteins in the cytosol

    No full text
    The way in which a newly synthesized polypeptide chain folds into its unique three-dimensional structure remains one of the fundamental questions in molecular biology. Protein folding in the cell is a problematic process and, in many cases, requires the assistance of a network of molecular chaperones to support productive protein folding in vivo. During protein biosynthesis, ribosome-associated chaperones guide the folding of the nascent polypeptide emerging from the ribosomal tunnel. In this review we summarize the basic principles of the protein-folding process and the involved chaperones, and focus on the role of ribosome-associated chaperones. Our discussion emphasizes the bacterial Trigger Factor, which is the best studied chaperone of this type. Recent advances have determined the atomic structure of the Trigger Factor, providing new, exciting insights into the role of ribosome-associated chaperones in co-translational protein folding
    • …
    corecore