11 research outputs found

    Anisotropic Quantum Corrections for 3-D Finite-Element Monte Carlo Simulations of Nanoscale Multigate Transistors

    Get PDF
    Anisotropic 2-D Schrödinger equation-based quantum corrections dependent on valley orientation are incorporated into a 3-D finite-element Monte Carlo simulation toolbox. The new toolbox is then applied to simulate nanoscale Si Siliconon-Insulator FinFETs with a gate length of 8.1 nm to study the contributions of conduction valleys to the drive current in various FinFET architectures and channel orientations. The 8.1 nm gate length FinFETs are studied for two cross sections: rectangular-like and triangular-like, and for two channel orientations: 〈100〉 and 〈110〉. We have found that quantum anisotropy effects play the strongest role in the triangular-like 〈100〉 channel device increasing the drain current by ~13% and slightly decreasing the current by 2% in the rectangular-like 〈100〉 channel device. The quantum anisotropy has a negligible effect in any device with the 〈110〉 channel orientation

    3-D Finite Element Monte Carlo Simulations of Scaled Si SOI FinFET With Different Cross Sections

    Get PDF
    Si SOI FinFETs with gate lengths of 12.8 nm and 10.7 nm are modelled using 3D Finite Element Monte Carlo (MC) simulations with 2D Schroedinger equation quantum corrections. These non-planar transistors are studied for two cross-sections: rectangular-like and triangular-like, and for two channel orientations: h100i and h110i. The 10.7 nm gate length rectangular-like FinFET is also simulated using the 3D Non-Equilibrium Green’s Functions (NEGF) technique and the results are compared with MC simulations. The 12.8 nm and 10.7 nm gate length rectangular-like FinFETs give larger drive currents per perimeter by about 25−27% than the triangular-like shaped but are outperformed by the triangular-like ones when normalised by channel area. The devices with a <100> channel orientation deliver a larger drive current by about 11% than their counterparts with a h110i channel when scaled to 12.8 nm and to 10.7 nm gate lengths. ID–VG characteristics at low and high drain biases obtained from the 3D NEGF simulations show a remarkable agreement with the MC results and overestimate the drain current from a gate bias of 0.5 V only due to exclusion of the interface roughness and ionized impurity scatterings

    Accurate iteration-free mixed-stabilised formulation for laminar incompressible Navier–Stokes: Applications to fluid–structure interaction

    Get PDF
    Stabilised mixed velocity–pressure formulations are one of the widely-used finite element schemes for computing the numerical solutions of laminar incompressible Navier–Stokes. In these formulations, the Newton–Raphson scheme is employed to solve the nonlinearity in the convection term. One fundamental issue with this approach is the computational cost incurred in the Newton–Raphson iterations at every load/time step. In this paper, we present an iteration-free mixed finite element formulation for incompressible Navier–Stokes that preserves second-order temporal accuracy of the generalised-alpha and related schemes for both velocity and pressure fields. First, we demonstrate the second-order temporal accuracy using numerical convergence studies for an example with a manufactured solution. Later, we assess the accuracy and the computational benefits of the proposed scheme by studying the benchmark example of flow past a fixed circular cylinder. Towards showcasing the applicability of the proposed technique in a wider context, the inf–sup stable P2–P1 pair for the formulation without stabilisation is also considered. Finally, the resulting benefits of using the proposed scheme for fluid–structure interaction problems are illustrated using two benchmark examples in fluid-flexible structure interaction

    A new family of projection schemes for the incompressible Navier–Stokes equations with control of high-frequency damping

    No full text
    A simple spatially discrete model problem consisting of mass points and dash-pots is presented which allows for the assessment of the properties of different projection schemes for the solution of the incompressible Navier–Stokes equations. In particular, the temporal accuracy, the stability and the numerical damping are investigated. The present study suggests that it is not possible to formulate a second order accurate projection/pressure-correction scheme which possesses any high-frequency damping. Motivated by this observation two new families of projection schemes are proposed which are developed from the generalised midpoint rule and from the generalised-alpha method, respectively, and offer control over high-frequency damping. Both schemes are investigated in detail on the basis of the model problem and subsequently implemented in the context of a finite element formulation for the incompressible Navier–Stokes equations. Comprehensive numerical studies of the flow in a lid-driven cavity and the flow around a cylinder are presented. The observations made are in agreement with the conclusions drawn from the model problem

    Dynamic modelling and actuation of the adaptive torsion wing

    No full text
    This paper presents the dynamical modelling of a novel Active Aeroelastic Structure (AAS). The Adaptive Torsion Wing (ATW) concept is a thin-wall, two-spar wingbox whose torsional stiffness can be adjusted by translating the spar webs in the chordwise direction inward and towards each other using internal actuators. The reduction in torsional stiffness allows external aerodynamic loads to induce twist on the structure and maintain its deformed shape. The ATW system is here considered as integrated within the wing of a representative UAV to replace conventional ailerons and provide roll control. The ATW is modelled as a two-dimensional equivalent aerofoil using bending and torsion shape functions to express the equations of motion in terms of the twist angle and plunge displacement at the wingtip. The full equations of motion for the ATW equivalent aerofoil were derived using Lagrangian mechanics. The aerodynamic lift and moment acting on the aerofoil were modelled using Theodorsen’s unsteady aerodynamic theory. A low-dimensional state-space representation of an empirical Theodorsen’s transfer function was adopted to allow time-domain analyses. Four actuation strategies were investigated. Figures of merit including plunge displacement, twist angle, actuation forces, and actuation powers were quantified and discussed for each of the scenarios. This study allows the conceptual design and sizing of the internal actuators that are required to drive the webs

    A partitioned scheme for adjoint shape sensitivity analysis of fluid–structure interactions involving non-matching meshes

    No full text
    This work presents a partitioned solution procedure to compute shape gradients in fluid–structure interaction (FSI) using black-box adjoint solvers. Special attention is paid to project the gradients onto the undeformed configuration due to the mixed Lagrangian–Eulerian formulation of large-deformation FSI in this work. The adjoint FSI problem is partitioned as an assembly of well-known adjoint fluid and structural problems. The sub-adjoint problems are coupled with each other by augmenting the target functions with auxiliary functions, independent of the concrete choice of the underlying adjoint formulations. The auxiliary functions are linear force-based or displacement-based functionals which are readily available in well-established single-disciplinary adjoint solvers. Adjoint structural displacements, adjoint fluid displacements, and domain-based adjoint sensitivities of the fluid are the coupling fields to be exchanged between the adjoint solvers. A reduced formulation is also derived for the case of boundary-based adjoint shape sensitivity analysis for fluids. Numerical studies show that the complete formulation computes accurate shape gradients whereas inaccuracies appear in the reduced gradients. Mapping techniques including nearest element interpolation and the mortar method are studied in computational adjoint FSI. It is numerically shown that the mortar method does not introduce spurious oscillations in primal and sensitivity fields along non-matching interfaces
    corecore