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Abstract

Stabilised mixed velocity-pressure formulations are one of the widely-used finite element schemes for com-
puting the numerical solutions of laminar incompressible Navier-Stokes. In these formulations, the Newton-
Raphson scheme is employed to solve the nonlinearity in the convection term. One fundamental issue with
this approach is the computational cost incurred in the Newton-Raphson iterations at every load/time step. In
this paper, we present an iteration-free mixed finite element formulation for incompressible Navier-Stokes that
preserves second-order temporal accuracy of the generalised-alpha and related schemes for both velocity and
pressure fields. First, we demonstrate the second-order temporal accuracy using numerical convergence studies
for an example with a manufactured solution. Later, we assess the accuracy and the computational benefits
of the proposed scheme by studying the benchmark example of flow past a fixed circular cylinder. Towards
showcasing the applicability of the proposed technique in a wider context, the inf-sup stable P2-P1 pair for
the formulation without stabilisation is also considered. Finally, the resulting benefits of using the proposed
scheme for fluid-structure interaction problems is illustrated using two benchmark examples in fluid-flexible
structure interaction.

Keywords: Incompressible Navier-Stokes; SUPG/PSPG stabilisation; Newton-Raphson scheme;
Fluid-structure interaction

1. Introduction

Navier-Stokes equations which model fluid flow are one of the most widely used partial differential equa-
tions in the fields of science and engineering. Obtaining accurate numerical solutions of Navier-Stokes equa-
tions has been one of the frontiers of research for more than a century. With the advent of computers, de-
velopment of accurate, robust and computationally efficient schemes for computing the numerical solutions
of Navier-Stokes equations has been one of the principal areas of research in computational engineering and
numerical mathematics.

The vast majority of schemes available for numerical solutions of Navier-Stokes belong to either the fi-
nite difference method (FDM) or finite volume method (FVM) or finite element method (FEM). Finite volume
methods have been the front runners of computational fluid dynamics (CFD) and still enjoy a significant share
among the commercial and opensource software suites for CFD, for example, OpenFOAM and ANSYS Fluent.
Thanks to the research and developments during the past couple of decades, see [1–5] and references therein,
finite element methods are not only proving to be strong competitors to finite volume methods but also are sur-
passing them in simulating multiphysics problems, see [6, 12, 13]; several recent open-source and commercial
software tools, for example, COMSOL Multiphysics, deal.ii, oomph-lib, FEBio, Elmer FEM, and FEniCS, are
based on FEM. The increased interest in the finite element methods for applications in CFD is their advantages
in modelling complex multiphysics phenomenon such as fluid-structure interaction (FSI).

Among finite element methods for incompressible fluid flow problems, those based on the SUPG/PSPG
stabilisation have been widely explored in the literature, thanks to their computational advantages, especially
in using the equal-order interpolation for velocity and pressure fields and iterative solvers that are computa-
tionally efficient for large matrix systems resulting from three-dimensional problems. Seminal contributions to
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stabilised mixed methods for incompressible fluid flow problems are by Hughes, Franca and group [7, 8] and
Tezduyar et al. [9–11].

Stabilised mixed formulations for incompressible Navier-Stokes have been successfully adapted to the mul-
tiphysics problem of fluid-structure interaction by several researchers. For comprehensive details on fluid-
structure interaction using mixed-stabilised methods, we refer the reader to Bazilevs et al. [6], Bungartz and
Schäfer [12], and Bungartz et al. [13], and references therein. In the majority of the FSI problems, the fluid
solver is the most time-consuming part; therefore, for efficient simulation of FSI problems, it is always advan-
tageous to minimise the computational cost incurred in the fluid solver, which is the main motivation behind
the proposed work.

The source of nonlinearity in the laminar viscous incompressible Navier-Stokes equations is the convection
term, and in the case of mixed-stabilised finite element formulations for incompressible Navier-Stokes, stabil-
isation terms also contribute to nonlinearity, see [7, 9]. In the mixed-stabilised formulations, this nonlinearity
is treated by employing an iterative solution scheme, for example, the widely-used Newton-Raphson scheme.
However, such iterative schemes have several disadvantages, with the computational cost being the most im-
portant one. With the Newton-Raphson scheme, one must re-compute the Jacobian matrix and solve the matrix
system at every iteration of every load/time step. Even though modified Newton-Raphson schemes that do not
require computation of tangent matrix during every iteration are available, their convergence is poor at best; in
some cases, they may not converge at all. Because of these disadvantages, it is always beneficial to avoid using
such iterative solution schemes.

Some variants of projection and fractional-step schemes c.f. [4, 14] avoid this nonlinearity with a linear
approximation of the nonlinear convection term. However, the fundamental issue with such an approach is
their first-order temporal convergence which poses severe restrictions on time step sizes in order to obtain
accurate numerical results. Although high-order temporal accuracy can be achieved by employing extrapolated
velocity fields, such a technique of using solutions from previous time steps is not always feasible, especially for
cut-cell based formulations in which the fluid domain changes over time c.f. [15–17]. To the knowledge of the
authors, no literature exists on the mixed-stabilised formulations that employ linearised convection operators for
laminar incompressible Navier-Strokes. In this paper, we present a linearised version of mixed velocity-pressure
formulation with SUPG/PSPG stabilisation for laminar incompressible Navier-Stokes that preserves second-
order accuracy of the generalised-alpha scheme, and that can compute numerical results that are comparable
with those of the standard iteration-based scheme while requiring only a fraction of computational resources.
We also demonstrate the applicability of the proposed technique in a wider context by using the inf-sup stable
P2-P1 pair for the formulation without stabilisation.

The rest of the paper is organised as follows. The governing equations, the finite element formulation and
the time integration schemes used in the present work are detailed in Section 2. The accuracy and the computa-
tional benefits of the proposed scheme are first demonstrated using flow over fixed body-fitted meshes in Section
3. Later, the applicability, accuracy and the resulting computational benefits of using the proposed approach
for fluid-structure interaction problems is illustrated using two fluid-flexible structure interaction benchmark
examples in Section 4. Important contributions and observations of the present work are summarised, and
conclusions are drawn in Section 5.

2. Formulation

2.1. Governing equations

The initial-boundary value problem for a laminar, isothermal, viscous, incompressible fluid flow in the
domain Ω is stated as:
Find velocity, v : Ω→ R3; and pressure, p : Ω→ R, such that:

ρ v̇ + ρ (v · ∇)v − µ∇2v +∇p = g in Ω (1a)

∇ · v = 0 in Ω (1b)

v = v̄ on ΓD (1c)

σ · n = t̄ on ΓN (1d)

v(·, 0) = v0 in Ω (1e)

p(·, 0) = p0 in Ω (1f)
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where v̇ = ∂v
∂t ; ∇ is the gradient operator; ρ is the density of the fluid; µ is the dynamic viscosity of the fluid;

g is the body force; n is the unit outward normal on the boundary, Γ, of Ω; ΓD is the part of the boundary
where Dirichlet boundary condition v̄ is applied; and ΓN is the part of the boundary where Neumann boundary
condition t̄ is applied. Here, Γ = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅. v0 and p0 are the initial velocity and pressure
fields in the fluid in the domain. The pseudo-stress σ is given by,

σ = µ∇v − p I (2)

where I is the second-order identity tensor.

2.2. Variational statement

The motivation behind the proposed technique is to improve the computational efficiency of coupled fluid-
structure interaction simulations using the stabilised finite element formulations for fluid flow [15–18]. Never-
theless, we also demonstrate that the proposed technique is equally applicable for the mixed formulation with
inf-sup stable or Ladyzhenskaya-Babuska-Brezzi (LBB) stable elements; the classical Taylor-Hood elements
based on the Langrangian polynomials [2, 19] are employed. In the computer implementation with the inf-sup
stable pair, the stabilisation terms are dropped.

The weak statement for the incompressible Navier-Stokes with velocity and pressure as the primary solution
variables is:
Find the discretised fluid velocity, vh ∈ Vh, and discretised pressure, ph ∈ Ph, such that for all the weighting
functions wh ∈ Wh and qh ∈ Qh

I1 + I2 =

∫
Ω
wh · gφ2 dΩ +

∫
ΓN

wh · t̄φ2 dΓ (3)

where Vh andWh are the function and test spaces for the velocity field; Ph and Qh are the function and test
spaces for the pressure field; I1 is the collection of linear terms in the weak form, given by,

I1 =

∫
Ω
ρwh · v̇hφ1 dΩ +

∫
Ω
µ∇wh : ∇vhφ2 dΩ−

∫
Ω

(∇ ·wh) phφ2 dΩ +

∫
Ω
qh (∇ · vhφ2) dΩ (4)

and I2 is the collection of nonlinear terms, given by,

I2 =

∫
Ω
ρwh ·

(
vhφ3 · ∇vhφ2

)
dΩ +

nelem∑
e=1

∫
Ωe

1

ρ
[τSUPG ρv

h
φ4 · ∇wh + τPSPG∇qh] · rM dΩe (5)

where
∑nelem

e=1 is the summation over the elements, nelem is the number of elements, τSUPG and τPSPG are the
stabilisation parameters, and rM is the residual of the momentum equation, given as,

rM = ρ v̇hφ1 + ρ(vhφ3 · ∇vhφ2)− µ∇2vhφ2 +∇phφ2 . (6)

In the above equations (3)-(6), φ1, φ2, φ3 and φ4 are the time instants which are chosen depending on the time
integration scheme and the treatment of convection term as a nonlinear or a linearised one.

2.3. Time integration schemes

We consider three different time integration schemes: BDF1, BDF2 and generalised-alpha.

2.3.1. BDF schemes

With vhn+1, vhn and vhn−1 as the velocity of the fluid at time instants tn+1, tn and tn−1, respectively, the
acceleration of the fluid v̇hn+1 at time instant tn+1, for the first two BDF schemes is given as

BDF1: v̇hn+1 =
1

∆t

[
vhn+1 − vhn

]
, (7)

BDF2: v̇hn+1 =
1

2 ∆t

[
3vhn+1 − 4vhn + vhn−1

]
, (8)

where ∆t is the time step size. BDF1 scheme is popular as the backward Euler (BE) scheme. The order of
temporal accuracy of the BDF1 and BDF2 schemes is, respectively, one and two.
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2.3.2. Generalised-alpha time integration scheme

For the generalised-alpha scheme proposed by Jansen et al. [20], and referred to as GA scheme henceforth
in this paper, the relations between velocity and acceleration are given as

vhn+αf
= αf v

h
n+1 + (1− αf )vhn, (9)

v̇hn+αm
= αm v̇

h
n+1 + (1− αm) v̇hn, (10)

v̇hn+1 =
1

γ∆t
(vhn+1 − vhn) +

γ − 1

γ
v̇hn. (11)

where v̇hn is the acceleration of the fluid at time instant tn. Following [20, 21], the GA scheme is second-order
accurate if the parameters αm, αf and γ are chosen such that

αm =
1

2

3− ρ∞
1 + ρ∞

, αf =
1

1 + ρ∞
, γ =

1

2
+ αm − αf , for 0 ≤ ρ∞ ≤ 1. (12)

Here, the parameter ρ∞ is the maximum absolute eigenvalue of the amplification matrix (also referred as the
spectral radius) of the GA scheme as ∆t→∞. This single parameter gives the user the control over the amount
of numerical damping for a particular resolution. By adjusting ρ∞, the user can control the range of frequencies,
relative to the chosen resolution level, that are to be preserved or damped out. For ρ∞ = 1, the scheme possesses
zero numerical damping, meaning that all the modes are preserved. Spectrally, this case is equivalent to the
trapezoidal scheme. For ρ∞ = 0, the scheme annihilates all the high-frequency modes after the first time step.
The GA scheme is spectrally equivalent to the second-order accurate backward-difference formula (BDF2), for
ρ∞ = 0, see [22] for details. Thus, by choosing ρ∞ appropriately, different time integration schemes can be
recovered from the GA scheme.

2.4. Formulation with nonlinear convection operator

The conventional method of solving incompressible Navier-Stokes using the mixed-stabilised finite ele-
ment formulations is to use the Newton-Raphson scheme to resolve the nonlinearity in the convection terms in
equations (5) and (6). For the purpose of discussion throughout this paper, we refer the conventional method of
using the Newton-Raphson scheme as the standard scheme.

For the standard scheme, the time instants φ1, φ2, φ3 and φ4 in equations (3)-(6) for the BDF schemes
become

φ1 = φ2 = φ3 = φ4 = n+ 1, (13)

while the corresponding values for the GA scheme are

φ1 = n+ αm (14)

φ2 = φ3 = φ4 = n+ αf . (15)

Following the above discussion, the generalised form of the functional I2, for the standard scheme can be
written as,

I2-Standard =

∫
Ω
ρwh ·

(
vhn+αf

· ∇vhn+αf

)
dΩ

+
nel∑
e=1

∫
Ωe

1

ρ
[τSUPG ρv

h
n+αf

· ∇wh + τPSPG∇qh] · rM-Standard dΩe, (16)

where,

rM-Standard = ρ v̇hn+αm
− µ∇2vhn+αf

+∇pn+αf
+ ρ(vhn+αf

· ∇vhn+αf
), (17)

which can be adapted for the BDF schemes by setting αm = 1 and αf = 1.
In spite of its second-order convergence of residuals with respect to iterations, the Newton-Raphson scheme

employed to resolve the nonlinearities in the standard Galerkin and stabilisation terms in equation (5) becomes
quite expensive, especially for large-scale problems in three dimensions. Moreover, our experience indicates
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that such an iterative procedure is unnecessary for all practical applications involving laminar fluid flows, partic-
ularly when small enough time steps are used for fluid-structure interaction problems due to accuracy and stabil-
ity concerns. In the following subsection, we present a novel iteration-free technique for computing numerical
solutions using mixed-stabilised formulations for unsteady laminar fluid flow problems without compromising
the temporal accuracy for first- and, more importantly, second-order accurate time integration schemes.

2.5. Formulation with linearised convection operators

The motivation behind the proposed scheme is to avoid iteration solution techniques at every time step
while preserving the accuracy for the finite element schemes for incompressible Navier-Stokes equations when
employing the coupled velocity-pressure mixed formulation, either with a stabilised formulation or with the
LBB-stable elements.

Considering that φ4 = n, the only nonlinearity present in the whole functional I2 is the convection term,
ρ
(
vhφ3 · ∇

)
vhφ2 . Iterative solution techniques in the fractional-step and projection schemes are avoided by

choosing vhφ3 = vhn, which, unfortunately, limits the order of temporal accuracy to one, even with higher-order
accurate time integration schemes for the viscous and pressure gradient terms. Second-order temporal accuracy
can be achieved by choosing appropriate extrapolation for the convective velocity field, see [22] for the details.

The generalised form of the functional I2 for the linearised convection operator with the first- and second-
order accurate extrapolated convection velocity can now be written as

I2-Extrapolated =

∫
Ω
ρwh ·

(
ṽhn+αf

· ∇vhn+αf

)
dΩ

+
nel∑
e=1

∫
Ωe

1

ρ
[τSUPG ρv

h
n · ∇wh + τPSPG∇qh] · rM-Extrapolated dΩe (18)

where,

rM-Extrapolated = ρ v̇hn+αm
− µ∇2vhn+αf

+∇pn+αf
+ ρ(ṽhn+αf

· ∇vhn+αf
). (19)

Here, ṽhn+αf
is the generalised extrapolated convection velocity which is necessary for preserving the second-

order accuracy for the pressure field when using the GA scheme with ρ∞ > 0, and it is given as

ṽhn+αf
= αf v

h
∗ + (1− αf )vhn. (20)

where

vh∗ = vhn, first-order accurate, (21)

vh∗ = 2vhn − vhn−1, second-order accurate. (22)

In this work, the mixed-stabilised formulations with linearised convection operators with extrapolated convec-
tion velocity are denoted as Extrapolated1 and Extrapolated2, respectively, with the first-order accurate (21)
and second-order accurate (22) extrapolated convection velocity.

Although the mixed-stabilised formulation with the functional (18) is completely linear, such a formulation
involving velocity fields from the previous time steps, especially at tn−1, is not feasible for schemes in which
the active solution domain for the fluid problem changes over time, for example, schemes based on cut cells
[15–17]. Therefore, alternative strategies for linearising the convection operator while still preserving second-
order temporal accuracy is necessary. In this work, the nonlinear functional (5) is reduced to a linear one as
follows.

For ρ = 1, the convection term for the GA scheme becomes

C =
(
vhn+αf

· ∇
)
vhn+αf

. (23)

With ∆vh as the velocity increment from time instant tn to time instant tn+1, we have,

vhn+αf
= αfv

h
n+1 + (1− αf )vhn = vhn + αf∆vh (24)
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Using (24), the convection term, C, can be expanded as,

C =
(
vhn+αf

· ∇
)
vhn+αf

=
(
vhn · ∇

)
vhn+αf︸ ︷︷ ︸+

(
αf∆vh · ∇

)
vhn+αf︸ ︷︷ ︸ (25)

= C1 + C2

If we ignore the second term, C2, then the convection term becomes linear. However, as already discussed
above, such a formulation is only first-order accurate in time. To overcome this drawback, we propose the
following modification that helps in preserving the second-order accuracy of the GA scheme.

By rearranging C2, Eq. (25) can be rewritten as,(
vhn+αf

· ∇
)
vhn+αf

=
(
vhn · ∇

)
vhn+αf

+
(
vhn+αf

· ∇
)
vhn −

(
vhn · ∇

)
vhn +

(
αf∆vh · ∇

)
αf∆vh (26)

≈
(
vhn · ∇

)
vhn+αf

+
(
vhn+αf

· ∇
)
vhn −

(
vhn · ∇

)
vhn (27)

So, in the proposed scheme, we ignore only the higher-order (nonlinear) term
(
αf∆vh · ∇

)
αf∆vh, instead

of ignoring the term C2 altogether. We demonstrate with convergence studies in Section. 3 that this approach
preserves second-order temporal accuracy of the GA scheme for both the velocity and pressure fields.

Now, the functional I2, for the proposed scheme becomes,

I2-Proposed =

∫
Ω
ρwh ·

(
vhn · ∇vhn+αf

+ vhn+αf
· ∇vhn − vhn · ∇vhn

)
dΩ

+
nel∑
e=1

∫
Ωe

1

ρ
[τSUPG ρv

h
n · ∇wh + τPSPG∇qh] · rM-Proposed dΩe (28)

where,

rM-Proposed = ρ v̇hn+αm
− µ∇2vhn+αf

+∇pn+αf
+ ρ(vhn · ∇vhn+αf

+ vhn+αf
· ∇vhn − vhn · ∇vhn). (29)

The formulation for the BDF schemes can be recovered by setting αm = 1 and αf = 1 in the above expressions
(28) and (29).

Since all the higher-order (nonlinear) terms are eliminated, the proposed scheme is linear; therefore, it
doesn’t require an iterative approach. It can be implemented in a computer code to compute the solutions
directly at the time instant tn+1, in the same manner as that usually followed for the Stokes or Oseen equations.

It is also worth pointing out at this point that the proposed scheme does not require any special treatment to
preserve the second-order accuracy in the case of adaptive time-stepping while the coefficients in equation (22)
need appropriate modifications for the Extrapolated2 scheme. Note also that the computational cost incurred
in computing and assembling the element matrices for one loop over elements is approximately the same in all
the three schemes.

3. Numerical examples - flow over fixed meshes

The accuracy and the computational advantages of the proposed technique are demonstrated first by study-
ing flows over fixed body-fitted meshes. As the inf-sup stable pair, we use the P2-P1 element. For spatial
discretisation when using the stabilised formulation, we employ the bi-linear quadrilateral (Q1) element with
equal-order interpolation for velocity and pressure, which we denote as Q1-Stab element for the sake of discus-
sion. The stabilisation parameters [11] are computed as,

τSUPG = τPSPG = [v ·Gv + 4 νG : G]−1/2 , (30)

where ν = µ
ρ andG is approximated as

G =
4

h2
I, (31)

in which h =
√

4A/π is the element characteristic length, with A as the area of the element. The resulting
matrix system of equations for the all the simulations presentted in this work are solved by using a sparse direct
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solver PARDISO [23]. The convergence tolerance for the residual in the standard iteration-based scheme is
taken as 10−8.

Note that the formulations for the steady-state problems can be recovered by ignoring the time derivative
terms and setting αf = 1 in the expressions in Sections. 2.4 and 2.5. For the sake of simplicity, only unsteady
flow problems are considered in this work.

3.1. Temporal convergence study with a manufactured solution

In this example, we consider a test case with a manufactured solution similar to the one proposed by Kim
and Moin [24]. The properties of the fluid are: ρ = 1 and µ = 0.02. The velocity and pressure fields are
assumed to be

vx = − cos(x) sin(y) sin(2 t), (32)

vy = sin(x) cos(y) sin(2 t), (33)

p = − 1

4
[cos(2x) + cos(2 y)] sin2(2 t). (34)

The balancing body force vector (g) is computed by substituting the solution in the momentum equation (1a).
The domain is assumed to be a square of side one unit. Spatial discretisations with 250×250 Q1-Stab elements
and 100 × 100 × 2 P2-P1 elements are considered. The error norms of velocity and pressure evaluated at the
time instant t = 5 are displayed in Figs. 1, 2 and 3, respectively, for the BDF1, GA with ρ∞ = 0 and GA
with ρ∞ = 0.5. As the BDF2 scheme is spectrally equivalent to the GA scheme with ρ∞ = 0, the error norms
obtained with the BDF2 scheme are identical to those of the GA scheme with ρ∞ = 0. Therefore, results
obtained with the BDF2 scheme are omitted to avoid redundancy.

As shown in Figs. 1, 2 and 3, numerical results obtained with the linearised convection operators converge
with optimal converge rates for both the BDF1 and GA schemes for the Q1-Stab as well as the P2-P1 elements.
Except for the largest time step size, there is a negligible difference in the norms of velocity computed using
the standard nonlinear scheme and the proposed formulations with linearised convection operators. Although
the difference in L2 norm for the pressure obtained with the standard and the proposed scheme is noticeable,
the rate of convergence in pressure obtained using the proposed approach is still second-order. This minor
loss of accuracy in pressure can be ignored for practical applications, and as illustrated using the unsteady
flow examples of flow past a circular cylinder and fluid-structure interaction, the effect of this difference is
negligible.
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Figure 1: Manufactured solution example: convergence of error norms at t = 5 obtained with BDF1 scheme using
different formulations. L2(•) and H1(•) refer to the L2 norm and H1 norm of the field •, respectively. L2 norms in
Y-component of velocity (vy) are about the same as those of the X-component; therefore, are not included in the graph
for the sake of clarity.
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Figure 2: Manufactured solution example: convergence of error norms at t = 5 obtained with GA scheme with ρ∞ = 0.0
using different formulations. The error norm values for this case are identical to those of the BDF2 scheme.

8



−0.3 0.0 0.3 0.6 0.9 1.2 1.5 1.8

- log(∆t)

10−5

10−4

10−3

10−2

10−1

100

101
er
ro
r
n
or
m

1

2

Q1-Stab element

−0.3 0.0 0.3 0.6 0.9 1.2 1.5 1.8

- log(∆t)

1

2

P2-P1 element

L2(vx) - Standard

L2(vx) - Extrapolated2

L2(vx) - Proposed

.

L2(p) - Standard

L2(p) - Extrapolated2

L2(p) - Proposed

‘

H1(v) - Standard

H1(v) - Extrapolated2

H1(v) - Proposed

Figure 3: Manufactured solution example: convergence of error norms at t = 5 obtained with GA scheme with ρ∞ = 0.5
using different formulations.

3.2. Flow past a fixed circular cylinder in 2D

Having established the temporal accuracy of the proposed scheme in the previous example, we now demon-
strate the accuracy and the computational advantages of the proposed scheme using the benchmark example of
unsteady flow past a fixed circular cylinder. The geometry and boundary conditions of the problem are shown
in Fig. 4. The finite element meshes used for the simulations are shown in Fig. 5. The quadrilateral mesh
consists of 12675 nodes and 12400 Q1-Stab elements with 160 linear edges along the circumference of the
circle. The triangular mesh consists of 15212 velocity nodes, 3873 pressure nodes and 7466 P2-P1 elements
with 64 quadratic edges along the circumference of the circle.

The density of the fluid and the inlet velocity are taken as ρ = 1 g/cm3 and (vx, vy) = (1, 0) cm/s,
respectively. The viscosity of the fluid is adjusted to match the Reynolds number, which is evaluated as Re =
ρ vinf D/µ, where D is the diameter of the cylinder and vinf is the free-stream velocity. In the present case,
D = 1 cm and vinf = 1 cm/s. In this work, we consider three different Reynolds numbers, 100, 200 and 400,
to illustrate the accuracy of the proposed scheme over a wide range of Reynolds numbers. For each Reynolds
number, simulations are carried out for four different time steps, ∆t = {0.4, 0.2, 0.1, 0.05} s, with the standard
nonlinear and the proposed linear formulations as well as the formulation based on the second-order accurate
extrapolated convection velocity. The spectral radius parameter for the generalised-alpha scheme is taken as
ρ∞ = 0.0.

In all the simulations, inlet velocity is ramped linearly from zero to one during the first second. All the
simulations are carried out up to 1000 seconds. The accuracy of the results is assessed by computing the
amplitude of lift coefficient (CL) and Strouhal number (St), the vortex shedding frequency.
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Figure 4: Flow past circular cylinder: geometry and boundary conditions. Length units are centimeters.

Figure 5: Flow past circular cylinder: body-fitted finite element meshes used for the simulations.

The computed values of CL and St are tabulated in Tables. 1, 2, 3, respectively, for Reynolds numbers
100, 200 and 400. The graphs for the evolution of the lift coefficient obtained with the Q1-Stab element with
two different time steps are presented in Figs. 6 and 7, respectively, for Reynolds numbers 100 and 200. The
corresponding graphs for the P2-P1 element are shown in Figs. 8 and 9. These results illustrate that numerical
results that are in excellent agreement with the standard scheme can be obtained using the proposed iteration-
free scheme. While both the proposed and the Extrapolated2 formulations convergence with ∆t, the agreement
with the standard formulation for large time steps is consistently better with the proposed formulation. The
contour plots of pressure presented in Fig. 10 show that the pressure field obtained with the proposed scheme
is smooth. The slight drop in accuracy in CL for the P2-P1 element for Re = 400 is attributed to the coarser
spatial discretisation for pressure for the P2-P1 element when compared with the Q1-Stab element.

The computational benefits of the proposed scheme are assessed by studying the number of iterations re-
quired for the standard methodology using the iteration-based Newton-Raphson scheme. The average number
of iterations required in each simulation using the standard scheme is tabulated in Table. 4. As expected, the
number of required iterations with the standard approach increases with an increase in the value of Reynolds
number, especially with large time steps, ∆t = 0.4 and ∆t = 0.2. On the contrary, the formulations with lin-
earised convection operators require only one iteration at every time step irrespective of the Reynolds number
and the time step size. Note that although the proposed and the Extrapolated2 formulations require only one
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iteration, the proposed scheme computes numerical results of the same accuracy as that of the standard nonlin-
ear scheme, unlike the Extrapolated2 formulation which still requires smaller time steps for obtaining results
that are comparable to that of the standard nonlinear scheme. Therefore, with its ability to compute numerical
results that are in good agreement with the standard scheme even when using large time steps, the proposed
scheme yields significant computational benefits over the standard and Extrapolated2 schemes. It is also worth
pointing out that the resulting computational benefits increase for flows with higher Reynolds numbers. In this
particular example, 3X-6X speedups are achieved, as can be deduced from Table 4, with minimal changes to
the existing code and without even resorting to the techniques of parallelisation.

Remark: Numerical results with the BDF1 scheme show the same trend as that observed with the GA
scheme, i.e., the results obtained with the proposed scheme are in much better agreement with the standard
scheme than those computed with the Extrapolated1 scheme.

Data
CL St

Standard Proposed Extrapolated2 Standard Proposed Extrapolated2

Present – Q1-Stab

∆t = 0.4 0.286 0.293 0.532 0.156 0.172 0.153

∆t = 0.2 0.333 0.331 0.376 0.168 0.174 0.168

∆t = 0.1 0.323 0.332 0.342 0.170 0.172 0.170

∆t = 0.05 0.331 0.332 0.334 0.168 0.168 0.168

Present – P2-P1

∆t = 0.4 0.293 0.316 0.541 0.159 0.158 0.176

∆t = 0.2 0.330 0.337 0.383 0.167 0.167 0.173

∆t = 0.1 0.337 0.339 0.349 0.169 0.169 0.167

∆t = 0.05 0.338 0.338 0.341 0.169 0.169 0.170

Braza et al. [25] 0.300 0.160

Calhoun [26] 0.298 0.175

Liu et al. [27] 0.339 0.165

Kadapa et al. [28] 0.339 0.166

Kadapa et al. [16] 0.330 0.169

Table 1: Flow past circular cylinder: CL and St values for Re = 100.
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Data
CL St

Standard Proposed Extrapolated2 Standard Proposed Extrapolated2

Present – Q1-Stab

∆t = 0.4 0.546 0.579 0.892 0.172 0.180 0.198

∆t = 0.2 0.656 0.672 0.726 0.194 0.194 0.206

∆t = 0.1 0.682 0.688 0.696 0.198 0.198 0.202

∆t = 0.05 0.685 0.687 0.688 0.198 0.198 0.200

Present – P2-P1

∆t = 0.4 0.544 0.573 0.885 0.181 0.180 0.199

∆t = 0.2 0.656 0.670 0.723 0.194 0.193 0.204

∆t = 0.1 0.689 0.688 0.698 0.202 0.197 0.202

∆t = 0.05 0.688 0.689 0.691 0.202 0.202 0.199

Braza et al. [25] 0.750 0.200

Franke et al. [29] 0.650 0.194

Calhoun [26] 0.668 0.202

Liu et al. [27] 0.690 0.192

Kadapa et al. [28] 0.711 0.194

Kadapa et al. [16] 0.717 0.196

Table 2: Flow past circular cylinder: CL and St values for Re = 200.

Data
CL St

Standard Proposed Extrapolated2 Standard Proposed Extrapolated2

Present – Q1-Stab

∆t = 0.4 0.827 0.848 1.167 0.196 0.190 0.206

∆t = 0.2 1.006 1.023 1.063 0.215 0.215 0.232

∆t = 0.1 1.052 1.061 1.064 0.218 0.218 0.224

∆t = 0.05 1.063 1.066 1.066 0.220 0.220 0.222

Present – P2-P1

∆t = 0.4 0.707 0.717 1.013 0.197 0.196 0.221

∆t = 0.2 0.880 0.895 0.897 0.216 0.214 0.235

∆t = 0.1 0.922 0.929 0.928 0.221 0.221 0.227

∆t = 0.05 0.930 0.932 0.931 0.223 0.223 0.224

Rajani et al. [30] 1.000 0.2348

Table 3: Flow past circular cylinder: CL and St values for Re = 400.
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Figure 6: Flow past circular cylinder: evolution of CL for Re = 100 with the Q1-Stab element.
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Figure 7: Flow past circular cylinder: evolution of CL for Re = 200 with the Q1-Stab element.
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Figure 8: Flow past circular cylinder: evolution of CL for Re = 100 with the P2-P1 element.
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Figure 9: Flow past circular cylinder: evolution of CL for Re = 200 with the P2-P1 element.
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Figure 10: Flow past circular cylinder: contour plots of pressure obtained with the proposed scheme using the Q1-Stab
element.

Time step (∆t)
Q1-Stab element P2-P1 element

Re = 100 Re = 200 Re = 400 Re = 100 Re = 200 Re = 400

0.4 4.0 5.0 5.7 3.7 4.7 4.8

0.2 4.0 4.6 5.2 3.7 3.9 4.3

0.1 4.0 4.0 4.9 3.7 3.9 3.9

0.05 3.9 4.0 4.3 2.9 3.7 3.8

Table 4: Flow past circular cylinder: average number of iterations for the standard scheme for 1000 seconds in each
simulation.

4. Numerical examples - fluid-structure interaction

In this section, we illustrate the computational advantages of the proposed scheme in the context of fluid-
structure interaction problems by studying two benchmark examples: (i) a thin flexible restrictor flap in a con-
verging channel [31] and (ii) vortex-induced vibrations of a thick flexible beam [32]. The simulation platform
used in present work is the hierarchical b-spline-based immersed boundary framework established in Dettmer
et al. [15] and Kadapa et al. [16, 17]. We discuss only the important aspects of the FSI framework in the present
work and refer the reader to Kadapa [17] for the comprehensive details.
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In the adapted FSI framework, the fluid-solid coupling is resolved using the iteration-free staggered scheme
proposed by Dettmer and Perić [33]; the fluid problem is discretised with hierarchical b-splines and solved using
the mixed velocity-pressure formulation with the SUPG/PSPG stabilisation, and the solid is modelled with first-
order quadrilateral/hexahedral elements with the standard displacement or the F -bar formulation of de Souza
Neto et al. [34]. The time integration scheme used for the fluid solver is the same generalised-alpha scheme
[20] that is considered in this paper and the time integration scheme for the elastodynamics is the generalised-
alpha scheme proposed by Chung and Hulbert [35]. Both the time integration schemes, as well as the staggered
scheme, are second-order accurate. The spectral radius parameters for the generalised-alpha schemes for both
the solid and fluid problems considered in the following examples are ρs∞ = ρf∞ = 0.

Since the proposed formulation has been found to yield better results than the Extrapolated2 formulation
when compared with the standard scheme for the example of flow of a fixed circular cylinder and, more impor-
tantly, since the Extrapolated2 formulation requires the velocity field at tn−1 which is not readily available for
the cut-cell-based formulation used in this work, only the standard and the proposed formulations are consid-
ered for the FSI examples.

The important steps involved in the fluid-structure interaction algorithm adapted in the present work are
outlined in Algorithm 1, in which Fn−1, Fn and Fn+1 are the global force vectors on the solid domain at time
instants tn−1, tn and tn+1, respectively; Fs

P

n+1 is the predicted force vector on the solid at tn+1; Ffn+1 is the
force exerted by the fluid at tn+1; and β is the relaxation parameter.

The important detail that is worth pointing out at this point is the computational efficiency of the overall FSI
algorithm adapted in the present work. In addition to the iteration-free staggered scheme of [33] which yields
significant computational benefits over iteration-based coupling algorithms c.f. [31, 36], the proposed approach
increases the computational efficiency further by reducing the computational cost incurred in the fluid solver,
Step 4 in Algorithm 1. The only iterative scheme used in the entire FSI framework adapted in the present work
is for the solid domain for which the computational cost in the majority of FSI problems is only a fraction of
the total computational cost of the simulation. Since the fluid solver is the most time-consuming part in the
majority of FSI simulations, the overall computational benefits in using the iteration-free coupling scheme and
the iteration-free fluid solver are substantial.

Algorithm 1 Algorithm for FSI problem

Set: parameters and initial conditions

Time loop

Step 1: predict force on the solid: Fs
P

n+1 = 2Fn − Fn−1

Step 2: solve the solid problem using Fs
P

n+1

Step 3: reposition immersed solid(s) and update the fluid mesh

Step 4: solve the fluid problem (no iterations here)

Step 5: obtain the fluid force Ffn+1

Step 6: average the interface force: Fn+1 = −β Ffn+1 + (1− β)Fs
P

n+1

Step 7: copy variables at tn+1 into variables at tn

End Time loop

4.1. Thin flexible restrictor flap in a converging channel

This example consists of a thin flexible restrictor flap fixed to the bottom of a converging channel right
before the contraction, as depicted schematically in Fig. 11. This example was first proposed by Neumann et
al. [31] and was later studied by Degroote et al. [36] for evaluating the performance of staggered or partitioned
approached to fluid-structure interaction problems with strong added-mass.

Following [36], the Young’s modulus and and Poisson’s ratio of the flap are taken, respectively, as Es =
2.3 × 106 N/m2 and νs = 0.45; the density of the flap’s material is taken as ρs = 1500 kg/m3. The material
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model is assumed to be the Saint Venant-Kirchhoff model. The flap is modelled using 4× 100 bilinear quadri-
lateral elements with the F -bar formulation of de Souza Neto et al. [34]. The dynamic viscosity of the fluid is
µ = 0.1 Pa s and the density of the fluid is taken ρ = ρf = 1750 kg/m3. With ρs/ρf ≈ 0.8571, this test case
corresponds to the extreme case of added-mass in Degroote et al. [36].

The fluid mesh at the start of the simulation is shown in Fig. 12. As shown, the fluid domain in the vicinity
of the flap is refined locally to accommodate the thin flexible flap. With equal-order linear b-splines for velocity
and pressure, the number of fluid degrees of freedom at the first time step is 78630, and it remains approximately
the same during the whole simulation. Note that it is possible to model this problem using fewer DOFs using
an FSI framework that supports beam models for thin solids, for example, Kadapa et al. [28], Degroote et al.
[36] and Muddle et al. [37].

The horizontal velocity profile at the inlet (vin) is given as

vin =

 0.5Vmax [1− cos(π t/10)], if 0 6 t 6 10

Vmax, if t > 10.
(35)

where Vmax = 0.06067 m/s. The relaxation parameter for the staggered scheme is β = 0.01.
Simulations are carried out for up to 50 seconds using three different time steps ∆t = {0.4, 0.2, 0.1} using

the standard nonlinear and the proposed linear schemes. The evolution of horizontal displacement of points A
and B obtained from different simulations is presented in Fig. 13. These results illustrate that the displacement
response of the beam obtained with the standard and the proposed schemes are indistinguishable from each
other for all the three different time steps considered. The accuracy of the results is further justified with the
contour plots of X-velocity and pressure at t = 50 s in Figs. 14 and 15, respectively. Fig. 16 shows the number
of Newton-Raphson iterations for the fluid problem at each time step for all the simulations. These results
prove that numerical results that are in excellent agreement with the standard approach can be obtained using
the proposed scheme at a lower computational cost, about only 30% of that of the standard scheme.

Another interesting point worth highlighting from the numerical results obtained for this example is the
ability of the Dettmer and Perić staggered scheme [33] in effectively overcoming the significant added-mass
issue well-known in this particular example.
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Figure 11: Flexible restrictor flap: geometry and boundary conditions. The dimensions are in meters.
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Figure 12: Flexible restrictor flap: the fluid mesh at the start of the simulation. Nodes corresponding to points A and
B are taken at the middle section of the solid beam model.
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Figure 13: Flexible restrictor flap: evolution of X-displacement of points A and B. Note that, for the results obtained
with the proposed scheme, only every second, fourth and eighth values are marked, respectively, for ∆t = 0.4, ∆t = 0.2
and ∆t = 0.1.
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Figure 14: Flexible restrictor flap: contour plots of velocity (m/s) at t = 50 s.
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Figure 15: Flexible restrictor flap: contour plots of pressure (Pa) at t = 50 s.
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Figure 16: Flexible restrictor flap: number of iterations for the fluid problem at each time step with different time step
sizes. The proposed scheme requires only one iteration irrespective of the time step size.

4.2. Turek FSI benchmark in 2D

In this example, we consider the test case FSI2 from Turek and Hron [32]. This particular case has been
previously studied using the Newton-Raphson scheme for the fluid problem in [17]. The set up of the problem
in terms of the geometry and boundary conditions is as shown in Fig. 17. The density and viscosity of the fluid
are ρf = 103 kg/m3 and µf = 1 Pa s, respectively; and the density, Young’s modulus and Poisson’s ratio of the
beam, respectively, are ρs = 104 kg/m3, Es = 1.4× 106 N/m2 and νs = 0.4.

The hierarchical b-spline mesh used for the fluid domain is shown in Fig. 18(a), and it is used with linear
b-splines, resulting in approximately 26000 degrees of freedom at each time step. The beam is discretised with
200 × 10 bilinear quadrilateral elements with the F -bar formulation of [34]. The material model considered
for the beam is the Saint Venant-Kirchhoff model. The relaxation parameter for the staggered scheme is set to
β = 0.05. The horizontal velocity profile at the inlet (vin) is taken as,

vin =

 0.5 vyin [1− cos(π t)], if 0 6 t 6 1

vyin, if t > 1.
(36)

where
vyin =

6

0.1681
y [0.41− y] m/s. (37)

To assess the relative performance of the proposed approach over the standard approach based on the
Newton-Raphson scheme for the fluid problem, simulations are carried out with three different time steps, ∆t =
{0.008, 0.004, 0.002} s. The evolution of displacement of point A in the Y-direction obtained with the standard
and the proposed schemes are presented in Figs. 19, 20 and 21, respectively, for ∆t = 0.008, ∆t = 0.004 and
∆t = 0.002. The maximum displacement and frequency of oscillations are tabulated in Table. 5. From these
results, it is clearly evident that the results obtained with the proposed scheme are in excellent agreement with
those of the standard scheme. The number of iterations for the fluid problem, as shown in Fig. 22, illustrate that
the proposed scheme is at least three times faster than the standard scheme. Thus, accurate numerical results can
be obtained with the proposed iteration-free scheme using fewer computational resources when compared with
the standard technique based on the Newton-Raphson scheme. This computational advantage of the proposed
scheme are directly transferable to large-scale three-dimensional problems.
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Figure 17: Turek FSI2 benchmark: geometry and boundary conditions. The dimensions are in meters.

(a) Hierarchical b-spline mesh for the fluid.

(b) Finite element mesh used for the beam.

Figure 18: Turek FSI2 benchmark: meshes used for the fluid and solid domains.
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Figure 19: Turek FSI2 benchmark: Y-displacement of point A obtained with ∆t = 0.008.
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Figure 20: Turek FSI2 benchmark: Y-displacement of point A obtained with ∆t = 0.004.
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Figure 21: Turek FSI2 benchmark: Y-displacement of point A obtained with ∆t = 0.002.
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Figure 22: Turek FSI2 benchmark: number of iterations for the fluid problem at each time step with different time step
sizes.
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Data max(dsy × 103) fo

Turek and Hron [32] - Level-2, ∆t = 0.001 1.18± 78.80 2.00

Turek and Hron [32] - Level-3, ∆t = 0.001 1.25± 79.30 2.00

Turek and Hron [32] - Level-4, ∆t = 0.001 1.23± 80.60 2.00

Standard scheme – ∆t = 0.008 1.40± 55.00 2.00

Proposed scheme – ∆t = 0.008 1.50± 54.90 2.00

Standard scheme – ∆t = 0.004 1.15± 71.95 1.95

Proposed scheme – ∆t = 0.004 1.15± 71.75 1.95

Standard scheme – ∆t = 0.002 1.20± 76.00 1.95

Proposed scheme – ∆t = 0.002 1.20± 76.00 1.95

Table 5: Turek FSI2 benchmark: summary of vertical displacement of point A (dsy) and frequency of oscillations (fo).

5. Summary and conclusions

We have presented a novel iteration-free approach for computing accurate numerical solutions of laminar
incompressible Navier-Stokes using the mixed velocity-pressure formulation. The accuracy and the computa-
tional advantages of the proposed technique are demonstrated using four numerical examples.

The proposed scheme is proven to converge with second-order accuracies in time for both the primary
variables, velocity and pressure, using an example with a manufactured solution. Later, with the example of
flow past a fixed circular cylinder, the accuracy and computational benefits of the proposed scheme for unsteady
laminar flow problems over fixed geometries are demonstrated. Finally, the computational advantages of the
proposed scheme for simulating the multiphysics problem of fluid-structure interaction are showcased.

Important features of the proposed scheme are summarised as follows.

1. The proposed scheme is linear. Therefore, it does not require an iterative technique for solving it, thereby
resulting in significant savings in computational time. The resulting computational gains increase with
the increase in the value of the Reynolds number and/or increasing the time step size, as illustrated with
the example of flow past a circular cylinder.

2. For large steps, numerical solutions computed using the proposed iteration-free scheme are in excellent
agreement with the standard nonlinear scheme when compared with the scheme based on the extrapolated
convection velocity.

3. Significant computational benefits can be achieved only with minor modifications to the existing code,
even without any parallelisation.

4. The proposed approach is not limited to the FSI framework used in the present work. The demonstrated
computational benefits could also be realised by adapting the proposed approach in any staggered or
partitioned FSI algorithm, either with body-fitted or unfitted meshes, that employs a fluid solver that is
based on the mixed velocity-pressure formulation with or without stabilisation.

From the results presented in this paper, we conclude that the proposed scheme is computationally appeal-
ing for computing the numerical solutions of laminar incompressible Navier-Stokes and its extension to FSI
problems. It is apparent from the presented results that the computational savings resulting from the proposed
scheme would be substantial, especially for large-scale fluid-structure interaction problems in three-dimensions.
We do not envisage any issues in extending this scheme to problems in three-dimensions.
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