468 research outputs found

    Divergent adaptation promotes reproductive isolation among experimental populations of the filamentous fungus Neurospora

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An open, focal issue in evolutionary biology is how reproductive isolation and speciation are initiated; elucidation of mechanisms with empirical evidence has lagged behind theory. Under ecological speciation, reproductive isolation between populations is predicted to evolve incidentally as a by-product of adaptation to divergent environments. The increased genetic diversity associated with interspecific hybridization has also been theorized to promote the development of reproductive isolation among independent populations. Using the fungal model <it>Neurospora</it>, we founded experimental lineages from both intra- and interspecific crosses, and evolved them in one of two sub-optimal, selective environments. We then measured the influence that initial genetic diversity and the direction of selection (parallel versus divergent) had on the evolution of reproductive isolation.</p> <p>Results</p> <p>When assayed in the selective environment in which they were evolved, lineages typically had greater asexual fitness than the progenitors and the lineages that were evolved in the alternate, selective environment. Assays for reproductive isolation showed that matings between lineages that were adapted to the same environment had greater sexual reproductive success than matings between lineages that were adapted to different environments. Evidence of this differential reproductive success was observed at two stages of the sexual cycle. For one of the two observed incompatibility phenotypes, results from genetic analyses were consistent with a two-locus, two-allele model with asymmetric (gender-specific), antagonistic epistasis. The effects of divergent adaptation on reproductive isolation were more pronounced for populations with greater initial genetic variation.</p> <p>Conclusion</p> <p>Divergent selection resulted in divergent adaptation and environmental specialization, consistent with fixation of different alleles in different environments. When brought together by mating, these alleles interacted negatively and had detrimental effects on sexual reproductive success, in agreement with the Dobzhansky-Muller model of genetic incompatibilities. As predicted by ecological speciation, greater reproductive isolation was observed among divergent-adapted lineages than among parallel-adapted lineages. These results support that, given adequate standing genetic variation, divergent adaptation can indirectly cause the evolution of reproductive isolation, and eventually lead to speciation.</p

    Optimum Monte Carlo Simulations: Some Exact Results

    Full text link
    We obtain exact results for the acceptance ratio and mean squared displacement in Monte Carlo simulations of the simple harmonic oscillator in DD dimensions. When the trial displacement is made uniformly in the radius, we demonstrate that the results are independent of the dimensionality of the space. We also study the dynamics of the process via a spectral analysis and we obtain an accurate description for the relaxation time.Comment: 17 pages, 8 figures. submitted to J. Phys.

    Texture and shape of two-dimensional domains of nematic liquid crystal

    Get PDF
    We present a generalized approach to compute the shape and internal structure of two-dimensional nematic domains. By using conformal mappings, we are able to compute the director field for a given domain shape that we choose from a rich class, which includes drops with large and small aspect ratios, and sharp domain tips as well as smooth ones. Results are assembled in a phase diagram that for given domain size, surface tension, anchoring strength, and elastic constant shows the transitions from a homogeneous to a bipolar director field, from circular to elongated droplets, and from sharp to smooth domain tips. We find a previously unaccounted regime, where the drop is nearly circular, the director field bipolar and the tip rounded. We also find that bicircular director fields, with foci that lie outside the domain, provide a remarkably accurate description of the optimal director field for a large range of values of the various shape parameters.Comment: 12 pages, 10 figure

    Species diversity and molecular characterization of Alternaria section Alternaria isolates collected mainly from cereal crops in Canada

    Get PDF
    Alternaria is often one on the most abundant fungal genera recovered from a wide array of plant hosts and environmental substrates. Many species within the sub-generic Alternaria section Alternaria are common plant pathogens that cause pre-harvest losses due to reduced productivity and post-harvest losses due to spoilage and contamination with mycotoxins. As certain species of Alternaria may have distinct mycotoxin profiles, and very broad host ranges, understanding the distribution of species by geography and host is critical for disease prediction, toxicological risk assessment, and guiding regulatory decisions. In two previous reports, we performed phylogenomic analyses to identify highly informative molecular markers for Alternaria section Alternaria, and validated their diagnostic ability. Here, we perform molecular characterization of 558 section Alternaria strains, collected from 64 host genera in 12 countries, using two of these section-specific loci (ASA-10 and ASA-19) along with the RNA polymerase II second largest subunit (rpb2) gene. The majority of strains (57.4%) originated from various cereal crops in Canada, which formed the main focus of our study. Phylogenetic analyses were used to classify strains into section Alternaria species/lineages, demonstrating that the most common species on Canadian cereal crops are Alternaria alternata and A. arborescens. Further population genetic analyses were consistent with A. alternata being a widely distributed species with relatively low levels of geographic isolation (i.e., Canadian isolates did not form distinct clades when compared to other regions). Our expanded sampling of A. arborescens has greatly increased the known diversity of this group, with A. arborescens isolates forming at least three distinct phylogenetic lineages. Proportionally, A. arborescens is more prevalent in Eastern Canada than in Western Canada. Sequence analyses, putative hybrids, and mating-type distributions provided some evidence for recombination events, both within and between species. There was little evidence for associations between hosts and genetic haplotypes of A. alternata or A. arborescens

    The Foundation Supernova Survey: Measuring Cosmological Parameters with Supernovae from a Single Telescope

    Full text link
    Measurements of the dark energy equation-of-state parameter, ww, have been limited by uncertainty in the selection effects and photometric calibration of z<0.1z<0.1 Type Ia supernovae (SNe Ia). The Foundation Supernova Survey is designed to lower these uncertainties by creating a new sample of z<0.1z<0.1 SNe Ia observed on the Pan-STARRS system. Here, we combine the Foundation sample with SNe from the Pan-STARRS Medium Deep Survey and measure cosmological parameters with 1,338 SNe from a single telescope and a single, well-calibrated photometric system. For the first time, both the low-zz and high-zz data are predominantly discovered by surveys that do not target pre-selected galaxies, reducing selection bias uncertainties. The z>0.1z>0.1 data include 875 SNe without spectroscopic classifications and we show that we can robustly marginalize over CC SN contamination. We measure Foundation Hubble residuals to be fainter than the pre-existing low-zz Hubble residuals by 0.046±0.0270.046 \pm 0.027 mag (stat+sys). By combining the SN Ia data with cosmic microwave background constraints, we find w=−0.938±0.053w=-0.938 \pm 0.053, consistent with Λ\LambdaCDM. With 463 spectroscopically classified SNe Ia alone, we measure w=−0.933±0.061w=-0.933\pm0.061. Using the more homogeneous and better-characterized Foundation sample gives a 55% reduction in the systematic uncertainty attributed to SN Ia sample selection biases. Although use of just a single photometric system at low and high redshift increases the impact of photometric calibration uncertainties in this analysis, previous low-zz samples may have correlated calibration uncertainties that were neglected in past studies. The full Foundation sample will observe up to 800 SNe to anchor the LSST and WFIRST Hubble diagrams.Comment: 30 pages, 17 figures, accepted by Ap

    Genetic Architecture of a Reinforced, Postmating, Reproductive Isolation Barrier between Neurospora Species Indicates Evolution via Natural Selection

    Get PDF
    A role for natural selection in reinforcing premating barriers is recognized, but selection for reinforcement of postmating barriers remains controversial. Organisms lacking evolvable premating barriers can theoretically reinforce postmating isolation, but only under restrictive conditions: parental investment in hybrid progeny must inhibit subsequent reproduction, and selected postmating barriers must restore parents' capacity to reproduce successfully. We show that reinforced postmating isolation markedly increases maternal fitness in the fungus Neurospora crassa, and we detect the evolutionary genetic signature of natural selection by quantitative trait locus (QTL) analysis of the reinforced barrier. Hybrid progeny of N. crassa and N. intermedia are highly inviable. Fertilization by local N. intermedia results in early abortion of hybrid fruitbodies, and we show that abortion is adaptive because only aborted maternal colonies remain fully receptive to future reproduction. In the first QTL analysis of postmating reinforcement in microbial eukaryotes, we identify 11 loci for abortive hybrid fruitbody development, including three major QTLs that together explain 30% of trait variance. One of the major QTLs and six QTLs of lesser effect are found on the mating-type determining chromosome of Neurospora. Several reinforcement QTLs are flanked by genetic markers showing either segregation distortion or non-random associations with alleles at other loci in a cross between N. crassa of different clades, suggesting that the loci also are associated with local effects on same-species reproduction. Statistical analysis of the allelic effects distribution for abortive hybrid fruitbody development indicates its evolution occurred under positive selection. Our results strongly support a role for natural selection in the evolution of reinforced postmating isolation in N. crassa

    Numerical Solutions of ideal two-fluid equations very closed to the event horizon of Schwarzschild black hole

    Full text link
    The 3+1 formalism of Thorne, Price and Macdonald has been used to derive the linear two-fluid equations describing transverse and longitudinal waves propagating in the two-fluid ideal collisionless plasmas surrounding a Schwarzschild black hole. The plasma is assumed to be falling in radial direction toward the event horizon. The relativistic two-fluid equations have been reformulate, in analogy with the special relativistic formulation as explained in an earlier paper, to take account of relativistic effects due to the event horizon. Here a WKB approximation is used to derive the local dispersion relation for these waves and solved numerically for the wave number k.Comment: 16 pages, 15 figures. arXiv admin note: text overlap with arXiv:0902.3766, arXiv:0807.459

    Ecological consequences of early Late Pleistocene megadroughts in tropical Africa

    Get PDF
    Extremely arid conditions in tropical Africa occurred in several discrete episodes between 135 and 90 ka, as demonstrated by lake core and seismic records from multiple basins [Scholz CA, Johnson TC, Cohen AS, King JW, Peck J, Overpeck JT, Talbot MR, Brown ET, Kalindekafe L, Amoako PYO, et al. (2007) Proc Natl Acad Sci USA 104:16416–16421]. This resulted in extraordinarily low lake levels, even in Africa\u27s deepest lakes. On the basis of well dated paleoecological records from Lake Malawi, which reflect both local and regional conditions, we show that this aridity had severe consequences for terrestrial and aquatic ecosystems. During the most arid phase, there was extremely low pollen production and limited charred-particle deposition, indicating insufficient vegetation to maintain substantial fires, and the Lake Malawi watershed experienced cool, semidesert conditions (\u3c400 mm/yr precipitation). Fossil and sedimentological data show that Lake Malawi itself, currently 706 m deep, was reduced to an ≈125 m deep saline, alkaline, well mixed lake. This episode of aridity was far more extreme than any experienced in the Afrotropics during the Last Glacial Maximum (≈35–15 ka). Aridity diminished after 95 ka, lake levels rose erratically, and salinity/alkalinity declined, reaching near-modern conditions after 60 ka. This record of lake levels and changing limnological conditions provides a framework for interpreting the evolution of the Lake Malawi fish and invertebrate species flocks. Moreover, this record, coupled with other regional records of early Late Pleistocene aridity, places new constraints on models of Afrotropical biogeographic refugia and early modern human population expansion into and out of tropical Africa
    • …
    corecore