606 research outputs found

    Spin frequency evolution and pulse profile variations of the recently re-activated radio magnetar XTE J1810-197

    Full text link
    After spending almost a decade in a radio-quiet state, the Anomalous X-ray Pulsar XTE J1810-197 turned back on in early December 2018. We have observed this radio magnetar at 1.5 GHz with ~daily cadence since the first detection of radio re-activation on 8 December 2018. In this paper, we report on the current timing properties of XTE J1810-197 and find that the magnitude of the spin frequency derivative has increased by a factor of 2.6 over our 48-day data set. We compare our results with the spin-down evolution reported during its previous active phase in the radio band. We also present total intensity pulse profiles at five different observing frequencies between 1.5 and 8.4 GHz, collected with the Lovell and the Effelsberg telescopes. The profile evolution in our data set is less erratic than what was reported during the previous active phase, and can be seen varying smoothly between observations. Profiles observed immediately after the outburst show the presence of at least five cycles of a very stable ~50-ms periodicity in the main pulse component that lasts for at least tens of days. This remarkable structure is seen across the full range of observing frequencies.Comment: 9 pages, 7 figures, updated with additional analysis of the 50-ms oscillation, accepted for publication in MNRA

    STEM analysis of deformation and B distribution in nanosecond laser ultra-doped Si1−x_{1-x} Bx_x

    Full text link
    We report on the structural properties of highly B-doped silicon (> 2 at. %) realised by nanosecond laser doping. We investigate the crystalline quality, deformation and B distribution profile of the doped layer by STEM analysis followed by HAADF contrast studies and GPA, and compare the results to SIMS analyses and Hall measurements. When increasing the active B concentration above 4.3 at.%, the fully strained, perfectly crystalline, Si:B layer starts showing dislocations and stacking faults. These only disappear around 8 at.% when the Si:B layer is well accommodated to the substrate. When increasing B incorporation, we increasingly observe small precipitates, filaments with higher active B concentration and stacking faults. At the highest concentrations studied, large precipitates form, related to the decrease of active B concentration. The structural deformation, defect type and concentration, and active B distribution are connected to the initial increase and subsequent gradual loss of superconductivity

    High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array

    Get PDF
    We report on the high-precision timing of 42 radio millisecond pulsars (MSPs) observed by the European Pulsar Timing Array (EPTA). This EPTA Data Release 1.0 extends up to mid-2014 and baselines range from 7–18 yr. It forms the basis for the stochastic gravitational-wave background, anisotropic background, and continuous-wave limits recently presented by the EPTA elsewhere. The Bayesian timing analysis performed with temponest yields the detection of several new parameters: seven parallaxes, nine proper motions and, in the case of six binary pulsars, an apparent change of the semimajor axis. We find the NE2001 Galactic electron density model to be a better match to our parallax distances (after correction from the Lutz–Kelker bias) than the M2 and M3 models by Schnitzeler. However, we measure an average uncertainty of 80 per cent (fractional) for NE2001, three times larger than what is typically assumed in the literature. We revisit the transverse velocity distribution for a set of 19 isolated and 57 binary MSPs and find no statistical difference between these two populations. We detect Shapiro delay in the timing residuals of PSRs J1600−3053 and J1918−0642, implying pulsar and companion masses m_p=1.22^(+0.5)_(−0.35) M_⊙, m_c=0.21^(+0.06)_(−0.04) M_⊙ and m_p=1.25^(+0.6)_(−0.4) M_⊙, m_c=0.23^(+0.07)_(−0.05) M_⊙, respectively. Finally, we use the measurement of the orbital period derivative to set a stringent constraint on the distance to PSRs J1012+5307 and J1909−3744, and set limits on the longitude of ascending node through the search of the annual-orbital parallax for PSRs J1600−3053 and J1909−3744

    Precision timing of PSR J1012+5307 and strong-field GR tests

    Full text link
    We report on the high precision timing analysis of the pulsar-white dwarf binary PSR J1012+5307. Using 15 years of multi-telescope data from the European Pulsar Timing Array (EPTA) network, a significant measurement of the variation of the orbital period is obtained. Using this ideal strong-field gravity laboratory we derive theory independent limits for both the dipole radiation and the variation of the gravitational constant.Comment: 3 pages, Proceedings of the 12th Marcel Grossmann Meeting on General Relativity (MG 12

    Evidence for an intermediate-mass black hole in the globular cluster NGC 6624

    Get PDF
    PSR B1820−-30A is located in the globular cluster NGC 6624 and is the closest known pulsar to the centre of any globular cluster. We present more than 25 years of high-precision timing observations of this millisecond pulsar and obtain four rotational frequency time derivative measurements. Modelling these higher-order derivatives as being due to orbital motion, we find solutions which indicate that the pulsar is in either a low-eccentricity (0.33≲e≲0.40.33\lesssim e\lesssim0.4) smaller orbit with a low mass companion (such as a main sequence star, white dwarf, neutron star, or stellar mass black hole) or a high-eccentricity (e≳0.9e\gtrsim0.9) larger orbit with a massive companion. The cluster mass properties and the observed properties of 4U 1820−-30 and the other pulsars in the cluster argue against the low-eccentricity possibility. The high-eccentricity solution reveals that the pulsar is most likely orbiting around an intermediate-mass black hole (IMBH) of mass >7,500> 7,500~M⊙_\odot located at the cluster centre. A gravitational model for the globular cluster, which includes such a central black hole (BH), predicts an acceleration that is commensurate with that measured for the pulsar. It further predicts that the model-dependent minimum mass of the IMBH is ∼60,000\sim60,000~M⊙_\odot. Accounting for the associated contribution to the observed period derivative indicates that the γ\gamma-ray efficiency of the pulsar should be between 0.08 and 0.2. Our results suggest that other globular clusters may also contain central black holes and they may be revealed by the study of new pulsars found sufficiently close to their centres. Note that we found an erratum in Section 5 and thus, the ∼\sim60,000~M⊙_\odot mass mentioned above has to be replaced by the correct model-dependent mass limit of ∼\sim20,000~M⊙_\odot. See the erratum appended.Comment: 15 pages, 10 figures, Accepted by MNRAS on 23 February 2017. Erratum was accepted by MNRAS on 17 May 201
    • …
    corecore