30 research outputs found

    Gene Expression Analyses of Neurons, Astrocytes, and Oligodendrocytes Isolated by Laser Capture Microdissection From Human Brain: Detrimental Effects of Laboratory Humidity

    Get PDF
    Laser capture microdissection (LCM) is a versatile computer-assisted dissection method that permits collection of tissue samples with a remarkable level of anatomical resolution. LCM\u27s application to the study of human brain pathology is growing, although it is still relatively underutilized, compared with other areas of research. The present study examined factors that affect the utility of LCM, as performed with an Arcturus Veritas, in the study of gene expression in the human brain using frozen tissue sections. LCM performance was ascertained by determining cell capture efficiency and the quality of RNA extracted from human brain tissue under varying conditions. Among these, the relative humidity of the laboratory where tissue sections are stained, handled, and submitted to LCM had a profound effect on the performance of the instrument and on the quality of RNA extracted from tissue sections. Low relative humidity in the laboratory, i.e., 6-23%, was conducive to little or no degradation of RNA extracted from tissue following staining and fixation and to high capture efficiency by the LCM instrument. LCM settings were optimized as described herein to permit the selective capture of astrocytes, oligodendrocytes, and noradrenergic neurons from tissue sections containing the human locus coeruleus, as determined by the gene expression of cell-specific markers. With due regard for specific limitations, LCM can be used to evaluate the molecular pathology of individual cell types in post-mortem human brain

    Identification of Iron-Responsive Proteins Expressed by Chlamydia Trachomatis Reticulate Bodies During Intracellular Growth

    No full text
    The obligate intracellular bacterium Chlamydia trachomatis serovar E is the most prevalent cause of bacterial sexually transmitted disease. With an established requirement for iron, the developmental cycle arrests at the intracellular reticulate body stage during iron restriction, resulting in a phenomenon termed persistence. Persistence has implications in natural infections for altered expression of virulence factors and antigens, in addition to a potential role in producing chronic infection. In this study, chlamydial proteins in iron-restricted, infected HEC-1B cells were radiolabelled during mid-developmental cycle growth, harvested, and separated using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Of ∼250 radiolabelled protein species visualized, densitometric analysis revealed 25 proteins that increased in expression under iron restriction compared to iron-sufficient control samples; ten protein species identified by mass spectrometry are involved in the oxidative damage response (alkyl hydroperoxide reductase, 6-phosphogluconolactonase and acyl carrier protein synthase), transcription (RNA polymerase subunit alpha and transcription anti-termination factors NusA and NusG), protein modification (peptide deformylase and trigger factor), and virulence (Chlamydia protein associating with death domains, CADD). Transcript-level expression patterns of ahpC, devB, cadd, fabF and ct538 were measured by quantitative RT-PCR throughout the developmental cycle, and each gene examined demonstrated a significant but small mid-cycle increase in transcript level in iron-restricted cultures compared to iron-replete controls. Taken together, these data suggest that the primary response of chlamydiae to reduced iron availability is to increase expression of proteins involved in protection against oxidative damage via iron-catalysed generation of reactive oxygen species and adaptation to stress by increasing expression of transcriptional machinery and other stress-responsive proteins

    Chlamydial Infection of Polarized HeLa Cells Induces PMN Chemotaxis but the Cytokine Profile Varies Between Disseminating and Non-Disseminating Strains

    No full text
    While genital infections caused by Chlamydia trachomatis are generally asymptomatic, the density and pattern of inflammation varies considerably. The purpose of this study was to try to dissect the signalling in chlamydiae-infected epithelial cells that triggers innate responses and regulates polymorphonuclear neutrophil (PMN) chemotaxis. Polarized endocervical epithelial HeLa cells, grown in commercial inserts, were inoculated either with the non-disseminating (luminal) serovar E or the disseminating serovar L2. At 12-48 h after infection, the chambers were used in a quantitative chemotaxis assay, and cytokine production by infected cells was examined using cDNA microarray technology and confirmed by enzyme-linked immunosorbent assay (ELISA). Infection of HeLa cells with C. trachomatis E or L2 induced a strong and similar PMN chemotactic response, but larger amounts of interleukin (IL)-8 and IL-11 were released after infection with serovar L2. IL-6 was also produced in modest amounts after infection with either strain, but no IL-1α or tumour necrosis factor (TNF)-α was detected in any of the culture supernatants tested. IL-11 did not appear to influence the PMN response to chlamydial infection, but secretion of large amounts of this anti-inflammatory cytokine, mainly active on macrophages, in the very early stages of the infection may allow C. trachomatis to escape some innate defences to establish infection

    Comparison of Chlamydia Trachomatis Serovar L2 Growth in Polarized Genital Epithelial Cells Grown in Three-Dimensional Culture With Non-Polarized Cells

    No full text
    A common model for studying Chlamydia trachomatis and growing chlamydial stocks uses Lymphogranuloma venereum serovar L2 and non-polarized HeLa cells. However, recent publications indicate that the growth rate and progeny yields can vary considerably for a particular strain depending on the cell line/type used, and seem to be partially related to cell tropism. In the present study, the growth of invasive serovar L2 was compared in endometrial HEC-1B and endocervical HeLa cells polarized on collagen-coated microcarrier beads, as well as in HeLa cells grown in tissue culture flasks. Microscopy analysis revealed no difference in chlamydial attachment/entry patterns or in inclusion development throughout the developmental cycle between cell lines. Very comparable growth curves in both cell lines were also found using real-time PCR analysis, with increases in chlamydial DNA content of 400-500-fold between 2 and 36 h post-inoculation. Similar progeny yields with comparable infectivity were recovered from HEC-1B and HeLa cell bead cultures, and no difference in chlamydial growth was found in polarized vs. non-polarized HeLa cells. In conclusion, unlike other C. trachomatis strains such as urogenital serovar E, invasive serovar L2 grows equally well in physiologically different endometrial and endocervical environments, regardless of the host cell polarization state

    Chlamydiae and Polymorphonuclear Leukocytes: Unlikely Allies in the Spread of Chlamydial Infection

    No full text
    While much is known about the attachment of the chlamydiae to the host cell and intracellular events during the developmental cycle, little is known about the mechanism(s) by which elementary bodies exit the cell. In this report, we use the guinea-pig conjunctival model of Chlamydia caviae infection to present in vivo ultrastructural evidence supporting two mechanisms for release of chlamydiae from the mucosal epithelia. Four days after infection, histopathologic observation shows an intense infiltration of polymorphonuclear leukocytes (PMN) in the conjunctival epithelium. Using transmission electron microscopy, a gradient-directed PMN response to chlamydiae-infected epithelial cells was observed. As PMN infiltration intensifies, epithelial hemidesmosome/integrin/focal adhesion adherence with the basal lamina is disconnected and PMNs literally lift off and release infected superficial epithelia from the mucosa. Many of these infected cells appear to be healthy with intact microvilli, nuclei, and mitochondria. While lysis of some infected cells occurs with release of chlamydiae into the extracellular surface milieu, the majority of infected cells are pushed off the epithelium. We propose that PMNs play an active role in detaching infected cells from the epithelium and that these infected cells eventually die releasing organisms but, in the process, move to new tissue sites via fluid dynamics

    Differences in Innate Immune Responses (In Vitro) to HeLa Cells Infected with Nondisseminating Serovar E and Disseminating Serovar L2 of Chlamydia trachomatis

    No full text
    The inflammatory response associated with Chlamydia trachomatis genital infections is thought to be initiated by the release of proinflammatory cytokines from infected epithelial cells. This study focuses on the interactions between C. trachomatis-infected HeLa cells and immune cells involved in the early stages of infection, i.e., neutrophils and macrophages. First, we showed that the expression of interleukin-11 (IL-11), an anti-inflammatory cytokine mainly active on macrophages, was upregulated at the mRNA level in the genital tracts of infected mice. Second, incubation of differentiated THP-1 (dTHP-1) cells or monocyte-derived macrophages (MdM) with basal culture supernatants from C. trachomatis serovar E- or serovar L2-infected HeLa cells resulted in macrophage activation with a differential release of tumor necrosis factor alpha (TNF-α) and upregulation of indoleamine 2,3-deoxygenase (IDO) but not of Toll-like receptor 2 and 4 mRNA expression. Third, coculture of infected HeLa cells with dTHP-1 cells resulted in a reduction in chlamydial growth, which was more dramatic for serovar E than for L2 and which was partially reversed by the addition of anti-TNF-α antibodies for serovar E or exogenous tryptophan for both serovars but was not reversed by the addition of superoxide dismutase or anti-IL-8 or anti-IL-1β antibodies. A gamma interferon-independent IDO mRNA upregulation was also detected in dTHP-1 cells from infected cocultures. Lastly, with a two-stage coculture system, we found that (i) supernatants from neutrophils added to the apical side of infected HeLa cell cultures were chlamydicidal and induced MdM to express antichlamydial activity and (ii) although polymorphonuclear leukocytes released more proinflammatory cytokines in response to serovar E- than in response to L2-infected cells, MdM were strongly activated by serovar L2 infection, indicating that the early inflammatory response generated with a nondisseminating or a disseminating strain is different

    Differences in Chlamydia Trachomatis Serovar E Growth Rate in Polarized Endometrial and Endocervical Epithelial Cells Grown in Three-Dimensional Culture

    No full text
    In vitro studies of obligate intracellular chlamydia biology and pathogenesis are highly dependent on the use of experimental models and growth conditions that mimic the mucosal architecture and environment these pathogens encounter during natural infections. In this study, the growth of Chlamydia trachomatis genital serovar E was monitored in mouse fibroblast McCoy cells and compared to more relevant host human epithelial endometrium-derived HEC-1B and cervix-derived HeLa cells, seeded and polarized on collagen-coated microcarrier beads, using a three-dimensional culture system. Microscopy analysis of these cell lines prior to infection revealed morphological differences reminiscent of their in vivo architecture. Upon infection, early chlamydial inclusion distribution was uniform in McCoy cells but patchy in both epithelial cell lines. Although no difference in chlamydial attachment to or entry into the two genital epithelial cell lines was noted, active bacterial genome replication and transcription, as well as initial transformation of elementary bodies to reticulate bodies, were detected earlier in HEC-1B than in HeLa cells, suggesting a faster growth, which led to higher progeny counts and titers in HEC-1B cells upon completion of the developmental cycle. Chlamydial development in the less relevant McCoy cells was very similar to that in HeLa cells, although higher progeny counts were obtained. In conclusion, this three-dimensional bead culture system represents an improved model for harvesting large quantities of infectious chlamydia progeny from their more natural polarized epithelial host cells

    DNA sequence explains seemingly disordered methylation levels in partially methylated domains of Mammalian genomes

    Get PDF
    For the most part metazoan genomes are highly methylated and harbor only small regions with low or absent methylation. In contrast, partially methylated domains (PMDs), recently discovered in a variety of cell lines and tissues, do not fit this paradigm as they show partial methylation for large portions (20%-40%) of the genome. While in PMDs methylation levels are reduced on average, we found that at single CpG resolution, they show extensive variability along the genome outside of CpG islands and DNase I hypersensitive sites (DHS). Methylation levels range from 0% to 100% in a roughly uniform fashion with only little similarity between neighboring CpGs. A comparison of various PMD-containing methylomes showed that these seemingly disordered states of methylation are strongly conserved across cell types for virtually every PMD. Comparative sequence analysis suggests that DNA sequence is a major determinant of these methylation states. This is further substantiated by a purely sequence based model which can predict 31% (R(2)) of the variation in methylation. The model revealed CpG density as the main driving feature promoting methylation, opposite to what has been shown for CpG islands, followed by various dinucleotides immediately flanking the CpG and a minor contribution from sequence preferences reflecting nucleosome positioning. Taken together we provide a reinterpretation for the nucleotide-specific methylation levels observed in PMDs, demonstrate their conservation across tissues and suggest that they are mainly determined by specific DNA sequence features
    corecore