65 research outputs found

    Gene Expression Analyses of Neurons, Astrocytes, and Oligodendrocytes Isolated by Laser Capture Microdissection From Human Brain: Detrimental Effects of Laboratory Humidity

    Get PDF
    Laser capture microdissection (LCM) is a versatile computer-assisted dissection method that permits collection of tissue samples with a remarkable level of anatomical resolution. LCM\u27s application to the study of human brain pathology is growing, although it is still relatively underutilized, compared with other areas of research. The present study examined factors that affect the utility of LCM, as performed with an Arcturus Veritas, in the study of gene expression in the human brain using frozen tissue sections. LCM performance was ascertained by determining cell capture efficiency and the quality of RNA extracted from human brain tissue under varying conditions. Among these, the relative humidity of the laboratory where tissue sections are stained, handled, and submitted to LCM had a profound effect on the performance of the instrument and on the quality of RNA extracted from tissue sections. Low relative humidity in the laboratory, i.e., 6-23%, was conducive to little or no degradation of RNA extracted from tissue following staining and fixation and to high capture efficiency by the LCM instrument. LCM settings were optimized as described herein to permit the selective capture of astrocytes, oligodendrocytes, and noradrenergic neurons from tissue sections containing the human locus coeruleus, as determined by the gene expression of cell-specific markers. With due regard for specific limitations, LCM can be used to evaluate the molecular pathology of individual cell types in post-mortem human brain

    Comparison of Chlamydia Trachomatis Serovar L2 Growth in Polarized Genital Epithelial Cells Grown in Three-Dimensional Culture With Non-Polarized Cells

    No full text
    A common model for studying Chlamydia trachomatis and growing chlamydial stocks uses Lymphogranuloma venereum serovar L2 and non-polarized HeLa cells. However, recent publications indicate that the growth rate and progeny yields can vary considerably for a particular strain depending on the cell line/type used, and seem to be partially related to cell tropism. In the present study, the growth of invasive serovar L2 was compared in endometrial HEC-1B and endocervical HeLa cells polarized on collagen-coated microcarrier beads, as well as in HeLa cells grown in tissue culture flasks. Microscopy analysis revealed no difference in chlamydial attachment/entry patterns or in inclusion development throughout the developmental cycle between cell lines. Very comparable growth curves in both cell lines were also found using real-time PCR analysis, with increases in chlamydial DNA content of 400-500-fold between 2 and 36 h post-inoculation. Similar progeny yields with comparable infectivity were recovered from HEC-1B and HeLa cell bead cultures, and no difference in chlamydial growth was found in polarized vs. non-polarized HeLa cells. In conclusion, unlike other C. trachomatis strains such as urogenital serovar E, invasive serovar L2 grows equally well in physiologically different endometrial and endocervical environments, regardless of the host cell polarization state

    Differences in Innate Immune Responses (In Vitro) to HeLa Cells Infected with Nondisseminating Serovar E and Disseminating Serovar L2 of Chlamydia trachomatis

    No full text
    The inflammatory response associated with Chlamydia trachomatis genital infections is thought to be initiated by the release of proinflammatory cytokines from infected epithelial cells. This study focuses on the interactions between C. trachomatis-infected HeLa cells and immune cells involved in the early stages of infection, i.e., neutrophils and macrophages. First, we showed that the expression of interleukin-11 (IL-11), an anti-inflammatory cytokine mainly active on macrophages, was upregulated at the mRNA level in the genital tracts of infected mice. Second, incubation of differentiated THP-1 (dTHP-1) cells or monocyte-derived macrophages (MdM) with basal culture supernatants from C. trachomatis serovar E- or serovar L2-infected HeLa cells resulted in macrophage activation with a differential release of tumor necrosis factor alpha (TNF-α) and upregulation of indoleamine 2,3-deoxygenase (IDO) but not of Toll-like receptor 2 and 4 mRNA expression. Third, coculture of infected HeLa cells with dTHP-1 cells resulted in a reduction in chlamydial growth, which was more dramatic for serovar E than for L2 and which was partially reversed by the addition of anti-TNF-α antibodies for serovar E or exogenous tryptophan for both serovars but was not reversed by the addition of superoxide dismutase or anti-IL-8 or anti-IL-1β antibodies. A gamma interferon-independent IDO mRNA upregulation was also detected in dTHP-1 cells from infected cocultures. Lastly, with a two-stage coculture system, we found that (i) supernatants from neutrophils added to the apical side of infected HeLa cell cultures were chlamydicidal and induced MdM to express antichlamydial activity and (ii) although polymorphonuclear leukocytes released more proinflammatory cytokines in response to serovar E- than in response to L2-infected cells, MdM were strongly activated by serovar L2 infection, indicating that the early inflammatory response generated with a nondisseminating or a disseminating strain is different

    Characterization of Estrogen-Responsive Epithelial Cell Lines and Their Infectivity by Genital Chlamydia Trachomatis

    No full text
    Chlamydial attachment and infectivity in vitro and ascending disease and sequelae in vivo have been reported to be enhanced/modulated by estrogen. Endometrial carcinoma cell lines Ishikawa and HEC-1B and the breast cancer lines MCF-7 and HCC-1806 were examined for Chlamydia trachomatis E infectivity. Estrogen receptor (ER) presence was confirmed by Western blot and qRT-PCR analyses. FACS analysis was used to determine the percent of plasma membrane-localized ERs (mERs), and their activity was tested by estrogen binding and competitive estrogen antagonists assays. Chlamydiae grew in all cell lines with HEC (90%) ≫ MCF-7 (57%) \u3e Ishikawa (51%) ≫ HCC-1806 (20%). The cell line ER isoform composition was re-defined as: ERα + ERβ + for MCF-7, HCC-1806 and Ishikawa; and ERβ only for HEC-1B. HeLa cells were also tested and found to express ERβ, but not ERα. A small percentage of both ERs were surface-exposed and functionally active. The endometrium- predominant ERβ isoform was found in all cell lines, including those most representative of the common sites of C. trachomatis infection. Thus, the role of chlamydial attachment/infectivity will now be analyzed in ERβ + and - isogenic HEC-1B cells
    corecore