121 research outputs found

    Epigenetic variance in dopamine D2 receptor: A marker of IQ malleability?

    Get PDF
    Genetic and environmental factors both contribute to cognitive test performance. A substantial increase in average intelligence test results in the second half of the previous century within one generation is unlikely to be explained by genetic changes. One possible explanation for the strong malleability of cognitive performance measure is that environmental factors modify gene expression via epigenetic mechanisms. Epigenetic factors may help to understand the recent observations of an association between dopamine-dependent encoding of reward prediction errors and cognitive capacity, which was modulated by adverse life events. The possible manifestation of malleable biomarkers contributing to variance in cognitive test performance, and thus possibly contributing to the “missing heritability” between estimates from twin studies and variance explained by genetic markers, is still unclear. Here we show in 1475 healthy adolescents from the IMaging and GENetics (IMAGEN) sample that general IQ (gIQ) is associated with (1) polygenic scores for intelligence, (2) epigenetic modification of DRD2 gene, (3) gray matter density in striatum, and (4) functional striatal activation elicited by temporarily surprising reward-predicting cues. Comparing the relative importance for the prediction of gIQ in an overlapping subsample, our results demonstrate neurobiological correlates of the malleability of gIQ and point to equal importance of genetic variance, epigenetic modification of DRD2 receptor gene, as well as functional striatal activation, known to influence dopamine neurotransmission. Peripheral epigenetic markers are in need of confirmation in the central nervous system and should be tested in longitudinal settings specifically assessing individual and environmental factors that modify epigenetic structure

    Differing impact of the COVID-19 pandemic on youth mental health: combined population and clinical study

    Get PDF
    Background: Identifying youths most at risk to COVID-19-related mental illness is essential for the development of effective targeted interventions. Aims: To compare trajectories of mental health throughout the pandemic in youth with and without prior mental illness and identify those most at risk of COVID-19-related mental illness. Method: Data were collected from individuals aged 18-26 years (N = 669) from two existing cohorts: IMAGEN, a population-based cohort; and ESTRA/STRATIFY, clinical cohorts of individuals with preexisting diagnoses of mental disorders. Repeated COVID-19 surveys and standardised mental health assessments were used to compare trajectories of mental health symptoms from before the pandemic through to the second lockdown. Results: Mental health trajectories differed significantly between cohorts. In the population cohort, depression and eating disorder symptoms increased by 33.9% (95% CI 31.78-36.57) and 15.6% (95% CI 15.39-15.68) during the pandemic, respectively. By contrast, these remained high over time in the clinical cohort. Conversely, trajectories of alcohol misuse were similar in both cohorts, decreasing continuously (a 15.2% decrease) during the pandemic. Pre-pandemic symptom severity predicted the observed mental health trajectories in the population cohort. Surprisingly, being relatively healthy predicted increases in depression and eating disorder symptoms and in body mass index. By contrast, those initially at higher risk for depression or eating disorders reported a lasting decrease. Conclusions: Healthier young people may be at greater risk of developing depressive or eating disorder symptoms during the COVID-19 pandemic. Targeted mental health interventions considering prior diagnostic risk may be warranted to help young people cope with the challenges of psychosocial stress and reduce the associated healthcare burden

    Oppositional COMT Val158Met effects on resting state functional connectivity in adolescents and adults

    No full text
    © 2014, The Author(s).Prefrontal dopamine levels are relatively increased in adolescence compared to adulthood. Genetic variation of COMT (COMT Val158Met) results in lower enzymatic activity and higher dopamine availability in Met carriers. Given the dramatic changes of synaptic dopamine during adolescence, it has been suggested that effects of COMT Val158Met genotypes might have oppositional effects in adolescents and adults. The present study aims to identify such oppositional COMT Val158Met effects in adolescents and adults in prefrontal brain networks at rest. Resting state functional connectivity data were collected from cross-sectional and multicenter study sites involving 106 healthy young adults (mean age 24 ± 2.6 years), gender matched to 106 randomly chosen 14-year-olds. We selected the anterior medial prefrontal cortex (amPFC) as seed due to its important role as nexus of the executive control and default mode network. We observed a significant age-dependent reversal of COMT Val158Met effects on resting state functional connectivity between amPFC and ventrolateral as well as dorsolateral prefrontal cortex, and parahippocampal gyrus. Val homozygous adults exhibited increased and adolescents decreased connectivity compared to Met homozygotes for all reported regions. Network analyses underscored the importance of the parahippocampal gyrus as mediator of observed effects. Results of this study demonstrate that adolescent and adult resting state networks are dose-dependently and diametrically affected by COMT genotypes following a hypothetical model of dopamine function that follows an inverted U-shaped curve. This study might provide cues for the understanding of disease onset or dopaminergic treatment mechanisms in major neuropsychiatric disorders such as schizophrenia and attention deficit hyperactivity disorder

    Examination of the neural basis of psychotic-like experiences in adolescence during processing of emotional faces

    Get PDF
    Contemporary theories propose that dysregulation of emotional perception is involved in the aetiology of psychosis. 298 healthy adolescents were assessed at age 14- and 19-years using fMRI while performing a facial emotion task. Psychotic-like experiences (PLEs) were assessed with the CAPE-42 questionnaire at age 19. The high PLEs group at age 19 years exhibited an enhanced response in right insular cortex and decreased response in right prefrontal, right parahippocampal and left striatal regions; also, a gradient of decreasing response to emotional faces with age, from 14 to 19 years, in the right parahippocampal region and left insular cortical area. The right insula demonstrated an increasing response to emotional faces with increasing age in the low PLEs group, and a decreasing response over time in the high PLEs group. The change in parahippocampal/amygdala and insula responses during the perception of emotional faces in adolescents with high PLEs between the ages of 14 and 19 suggests a potential ‘aberrant’ neurodevelopmental trajectory for critical limbic areas. Our findings emphasize the role of the frontal and limbic areas in the aetiology of psychotic symptoms, in subjects without the illness phenotype and the confounds introduced by antipsychotic medication
    corecore