27 research outputs found

    Diversity of innate immune cell subsets across spatial and temporal scales in an EAE mouse model

    Get PDF
    International audienceIn both multiple sclerosis and its model experimental autoimmune encephalomyelitis (EAE), the extent of resident microglia activation and infiltration of monocyte-derived cells to the CNS is positively correlated to tissue damage. To address the phenotype characterization of different cell subsets, their spatio-temporal distributions and contributions to disease development we induced EAE in Thy1-CFP//LysM-EGFP//CD11c-EYFP reporter mice. We combined high content flow cytometry, immunofluorescence and two-photon imaging in live mice and identified a stepwise program of inflammatory cells accumulation. First on day 10 after induction, EGFP+ neutrophils and monocytes invade the spinal cord parenchyma through the meninges rather than by extravasion. This event occurs just before axonal losses in the white matter. Once in the parenchyma, monocytes mature into EGFP+/EYFP+ monocyte-derived dendritic cells (moDCs) whose density is maximal on day 17 when the axonal degradation and clinical signs stabilize. Meanwhile, microglia is progressively activated in the grey matter and subsequently recruited to plaques to phagocyte axon debris. LysM-EGFP//CD11c-EYFP mice appear as a powerful tool to differentiate moDCs from macrophages and to study the dynamics of immune cell maturation and phenotypic evolution in EAE

    Regulation of Neuroinflammation: What Role for the Tumor Necrosis Factor-Like Weak Inducer of Apoptosis/Fn14 Pathway?

    No full text
    International audienceObserved in many central nervous system diseases, neuroinflammation (NI) proceeds from peripheral immune cell infiltration into the parenchyma, from cytokine secretion and from oxidative stress. Astrocytes and microglia also get activated and proliferate. NI manifestations and consequences depend on its context and on the acute or chronic aspect of the disease. The tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/Fn14 pathway has been involved in chronic human inflammatory pathologies such as neurodegenerative, autoimmune, or malignant diseases. New data now describe its regulatory effects in tissues or fluids from patients with neurological diseases. In this mini-review, we aim to highlight the role of TWEAK/Fn14 in modulating NI in multiple sclerosis, neuropsychiatric systemic lupus erythematosus, stroke, or glioma. TWEAK/Fn14 can modulate NI by activating canonical and non-canonical nuclear factor-ÎșB pathways but also by stimulating mitogen-activated protein kinase signaling. These downstream activations are associated with (i) inflammatory cytokine, chemokine and adhesion molecule expression or release, involved in NI propagation, (ii) matrix-metalloproteinase 9 secretion, implicated in blood–brain barrier disruption and tissue remodeling, (iii) astrogliosis and microgliosis, and (iv) migration of tumor cells in glioma. In addition, we report several animal and human studies pointing to TWEAK as an attractive therapeutic target

    Is TWEAK a Biomarker for Autoimmune/Chronic Inflammatory Diseases?

    Get PDF
    International audienceThe TWEAK/Fn14 pathway is now well-known for its involvement in the modulation of inflammation in various human autoimmune/chronic inflammatory diseases (AICID) including lupus, rheumatoid arthritis, and multiple sclerosis. A panel of data is now available concerning TWEAK expression in tissues or biological fluids of patients suffering from AICID, suggesting that it could be a promising biological marker in these diseases. Evidences from several teams support the hypothesis that blocking TWEAK/Fn14 pathway is an attractive new therapeutic lead in such diseases and clinical trials with anti-TWEAK-blocking antibodies are in progress. In this mini-review we discuss the potential use of TWEAK quantification in AICD management in routine practice and highlight the challenge of standardizing data collection to better estimate the clinical utility of such a biological parameter

    Diagnostic performance of a new vimentin-derived ACPA (CCP high ă sensitive) in patients with rheumatoid arthritis

    No full text
    International audienceAutoantibodies are a common feature of rheumatoid arthritis (RA), and ă their detection is used as a diagnostic tool in medical practice. ă Rheumatoid factor (RF) and/or anti-citrullinated protein antibodies ă (ACPA) detection in patients' sera are now included in 2010 ACR/EULAR ă criteria for RA diagnosis. In this study, we evaluated a new ă vimentin-derived ACPA ELISA, the anti-cyclic citrullinated peptide high ă sensitive (CCP hs) test, and we compared its performance with the RF IgM ă and anti-CCP3 tests on a French multicenter cohort of 84 RA patients, ă 107 non-RA patients and 100 healthy controls. Sensitivities for RA ă diagnosis were 71.4, 84.5 and 64.3 % and specificities were 88.4, 86.9 ă and 87.3 % for CCP hs, CCP3 and RF IgM, respectively. There was a ă moderate correlation between CCP hs and CCP3 titers (Pearson's r = 0.43; ă p < 0.0001). These results support the contention that anti-CCP hs ă antibodies are new reliable ACPA with high specificity for RA

    TWEAK/Fn14 pathway modulates properties of a human microvascular endothelial cell model of blood brain barrier.

    Get PDF
    International audienceABSTRACT: BACKGROUND: The TNF ligand family member TWEAK exists as membrane and soluble forms and is involved in the regulation of various human inflammatory pathologies, through binding to its main receptor, Fn14. We have shown that the soluble form of TWEAK has a pro-neuroinflammatory effect in an animal model of multiple sclerosis and we further demonstrated that blocking TWEAK activity during the recruitment phase of immune cells across the blood brain barrier (BBB) was protective in this model. It is now well established that endothelial cells in the periphery and astrocytes in the central nervous system (CNS) are targets of TWEAK. Moreover, it has been shown by others that, when injected into mice brains, TWEAK disrupts the architecture of the BBB and induces expression of matrix metalloproteinase-9 (MMP-9) in the brain. Nevertheless, the mechanisms involved in such conditions are complex and remain to be explored, especially because there is a lack of data concerning the TWEAK/Fn14 pathway in microvascular cerebral endothelial cells. METHODS: In this study, we used human cerebral microvascular endothelial cell (HCMEC) cultures as an in vitro model of the BBB to study the effects of soluble TWEAK on the properties and the integrity of the BBB model. RESULTS: We showed that soluble TWEAK induces an inflammatory profile on HCMECs, especially by promoting secretion of cytokines, by modulating production and activation of MMP-9, and by expression of cell adhesion molecules. We also demonstrated that these effects of TWEAK are associated with increased permeability of the HCMEC monolayer in the in vitro BBB model. CONCLUSIONS: Taken together, the data suggest a role for soluble TWEAK in BBB inflammation and in the promotion of BBB interactions with immune cells. These results support the contention that the TWEAK/Fn14 pathway could contribute at least to the endothelial steps of neuroinflammation
    corecore