86 research outputs found
The Yellowstone Hotspot, Greater Yellowstone Ecosystem, and Human Geography
Active geologic processes associated with the Yellowstone hotspot are fundamental in shaping the landscapes of the greater Yellowstone ecosystem (GYE), a high volcanic plateau flanked by a crescent of still higher mountainous terrain. The processes associated with the Yellowstone hotspot are volcanism, faulting, and uplift and are observed in the geology at the surface. We attribute the driving forces responsible for the northeastward progression of these processes to a thermal plume rising through the Earth’s mantle into the base of the southwest-moving North American plate. This progression began 16 million years ago (Ma) near the Nevada-Oregon border and arrived at Yellowstone about 2 Ma. Before arrival of the hotspot, an older landscape existed, particularly mountains created during the Laramide orogeny about 70–50 Ma and volcanic terrain formed by Absaroka andesitic volcanism mostly between 50–45 Ma. These landscapes were more muted than the present, hotspot-modified landscape because the Laramide-age mountains had worn down and an erosion surface of low relief had developed on the Absaroka volcanic terrain.
The Yellowstone Plateau was built by hotspot volcanism of rhyolitic lavas and caldera-forming rhyolite tuffs (ignimbrites). Streams eroding back into the edges of this plateau have created scenic waterfalls and canyons such as the Grand Canyon of the Yellowstone and Lewis Canyon. Rhyolite is poor in plant nutrients and forms sandy, well-drained soils that support the monotonous, fire-adapted lodgepole pine forests of the Yellowstone Plateau. Non-rhyolitic rocks surround this plateau and sustain more varied vegetation, including spruce, fir, and whitebark pine forests broken by grassy meadows. Heat from the hotspot rises upward and drives Yellowstone’s famed geysers, hot springs, and mudpots. These thermal waters are home to specialized, primitive ecosystems, rich in algae and bacteria. The rock alteration associated with hydrothermal systems creates the bright colors of Yellowstone’s Grand Canyon.
Basin-and-range-style faulting has accompanied migration of the hotspot to Yellowstone and formed the linear mountains and valleys that occur north and south of the hotspot track, which is the present-day eastern Snake River Plain. High rates of basin-and-range faulting occurred adjacent to the migrating Yellowstone hotspot, creating distinctive landscapes within the GYE such as the Teton Range/Jackson Hole, with characteristic rugged, forested ranges and adjacent flat-floored grassy valleys. The difference in altitude between the mountains and valleys provides a topographic gradient in which vegetation maturation advances with altitude; animal-migration patterns also follow this trend. The valleys provide natural meadows, agricultural land, town sites, and corridors for roads.
Uplift of the GYE by as much as 1 km (3,000 ft) during the last 5 million years has resulted in ongoing erosion of deep, steep-walled valleys. Many prominent ecological characteristics of Yellowstone derive from this hotspot-induced uplift, including the moderate- to high- altitude terrain and associated cool temperatures and deep snowfall.
Modern and Pleistocene climate and associated vegetation patterns strongly relate to the topography created by the hotspot and its track along the eastern Snake River Plain. Winter air masses from the moist northern Pacific Ocean traverse the topographic low of the Snake River Plain to where orographic rise onto the Yellowstone Plateau and adjacent mountains produces deep snow. A winter precipitation shadow forms on the lee (eastern) sides of the GYE. During Pleistocene glacial times, this moisture conduit provided by the hotspot-track-produced ice-age glaciers that covered the core of the present GYE. These glaciers sculpted bedrock and produced glacial moraines that are both forested and unforested, sand and gravel of ice-marginal streams and outwash gravels that are commonly covered with sagebrush-grassland, and silty lake sediments that are commonly covered by lush grassland such as Hayden Valley.
The effects of the Yellowstone hotspot also profoundly shaped the human history in the GYE. Uplift associated with the hotspot elevates the GYE to form the Continental Divide, and streams drain radially outward like spokes from a hub. Inhabitants of the GYE 12,000–10,000 years ago, as well as more recent inhabitants, followed the seasonal green-up of plants and migrating animals up into the mountain areas. During European immigration, people settled around Yellowstone in the lower parts of the drainages and established roads, irrigation systems, and cultural associations. The core Yellowstone highland is too harsh for agriculture and inhospitable to people in the winter. Beyond this core, urban and rural communities exist in valleys and are separated by upland areas. The partitioning inhibits any physical connection of communities, which in turn complicates pursuit of common interests across the whole GYE. Settlements thus geographically isolated evolved as diverse, independent communities
Galactic chemical evolution of heavy elements: from Barium to Europium
We follow the chemical evolution of the Galaxy for elements from Ba to Eu,
using an evolutionary model suitable to reproduce a large set of Galactic
(local and non local) and extragalactic constraints. Input stellar yields for
neutron-rich nuclei have been separated into their s-process and r-process
components. The production of s-process elements in thermally pulsing
asymptotic giant branch stars of low mass proceeds from the combined operation
of two neutron sources: the dominant reaction 13C(alpha,n)16O, which releases
neutrons in radiative conditions during the interpulse phase, and the reaction
22Ne(alpha,n)25Mg, marginally activated during thermal instabilities. The
resulting s-process distribution is strongly dependent on the stellar
metallicity. For the standard model discussed in this paper, it shows a sharp
production of the Ba-peak elements around Z = Z_sun/4. Concerning the r-process
yields, we assume that the production of r-nuclei is a primary process
occurring in stars near the lowest mass limit for Type II supernova
progenitors. The r-contribution to each nucleus is computed as the difference
between its solar abundance and its s-contribution given by the Galactic
chemical evolution model at the epoch of the solar system formation. We compare
our results with spectroscopic abundances of elements from Ba to Eu at various
metallicities (mainly from F and G stars) showing that the observed trends can
be understood in the light of the present knowledge of neutron capture
nucleosynthesis. Finally, we discuss a number of emerging features that deserve
further scrutiny.Comment: 34 pages, 13 figures. accepted by Ap
Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy
We review HB stars in a broad astrophysical context, including both variable
and non-variable stars. A reassessment of the Oosterhoff dichotomy is
presented, which provides unprecedented detail regarding its origin and
systematics. We show that the Oosterhoff dichotomy and the distribution of
globular clusters (GCs) in the HB morphology-metallicity plane both exclude,
with high statistical significance, the possibility that the Galactic halo may
have formed from the accretion of dwarf galaxies resembling present-day Milky
Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the
second-parameter problem is presented. A technique is proposed to estimate the
HB types of extragalactic GCs on the basis of integrated far-UV photometry. The
relationship between the absolute V magnitude of the HB at the RR Lyrae level
and metallicity, as obtained on the basis of trigonometric parallax
measurements for the star RR Lyrae, is also revisited, giving a distance
modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are
studied. Finally, the conductive opacities used in evolutionary calculations of
low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and
Space Scienc
Recommended from our members
Nonlinear Pulsation Modeling of Luminous Blue Variables
Using an updated version of the Ostlie and Cox (1993) nonlinear hydrodynamics code, we show the results of Luminous Blue Variable (LBV) envelope models based on evolution models of initial mass 50-80 M solar. including mass loss. The models use OPAL opacities, contain 60-120 Lagrangian zones, include time dependent convection, and are given an initial photospheric radial velocity amplitude of 1 km/sec. Our goal is to explain the reason for the LBV instability strip and suggest a cause for LBV outbursts observed in massive stars in our Galaxy as well as the LMC and SMC
Simultaneous Comparison of RF Probe Techniques for Determination of Ionospheric Electron Density
Three radio-frequency( RF) probe techniques--standingw ave impedancep robe, plasma frequency probe, and resonance rectification probe--have been simultaneously flown on rockets for ionospheric measurements. The results of the three probes are compared to establisht he relationshipsa mong them. The impedancep robe and plasma frequency probe measurements are in general agreement with each other and with other independent measurements. A model of antenna-ionosphericin teraction is used that neglects ion sheath and magnetic field effects. The resonance rectification probe shows resonance effects including peaks.and minimums that are a function of probe dc bias. The frequency of the dominant resonance peak does not correspond to the plasma frequency but is near a lower frequency of an impedances eriesr esonancea s measuredb y the plasmaf requencyp robe
Recommended from our members
Role of the Radiation Pressure Gradient in Giant and Supergiant Star Evolution
Since some of the earliest evolutionary calculations it has been found that post main sequence stars become red giants (e.g. Sandage and Schwarzschild, 1952). However the exact physical processes that lead to and determine the rate of redward evolution are not completely understood. We hypothesized that the redward evolution might be due to an increase in radiation pressure somewhere in the star that causes the layers above it to be pushed outward, resulting in an expanded envelope and a cooler surface temperature. If the radiative luminosity somewhere in the star approached the Eddington limit, the outer layers would obviously expand. However, due to the presence of gas pressure, the critical value for expansion would be somewhat less than the Eddington limit
- …