46 research outputs found

    Selective and sensitive poly-<i>ortho</i>-phenylenediamine-shielded microsensore and biosensors for in vivo neurochemical monitoring

    Get PDF
    Different methodologies are being developed, such as imaging, spectroscopy and electrochemistry, to study neurochemical dynamics in cell cultures or in intact brain [1-2]. One of these techniques involves the in-situ detection of biologically active molecules, including nitric oxide (NO) [3], glucose [4], glutamate (GLUT) [5-6] and lactate [1,7], in brain extracellular fluid (ECF), using implanted microsensors and biosensors. NO is a water-soluble free radical that readily diffuses through membranes and its actions in the CNS are largely studied

    The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induces apoptosis in mouse nigrostriatal glia. Relevance to nigral neuronal death and striatal neurochemical changes.

    Get PDF
    Swiss mice were given 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 25 mg/kg/day, for 5 consecutive days and killed at different days after MPTP discontinuance. Decreases in striatal tyrosine hydroxylase activity and levels of dopamine and its metabolites were observed 1 day after MPTP discontinuance. Ascorbic acid and glutamate levels had increased, dehydroascorbic acid and GSH decreased, whereas catabolites of high-energy phosphates (inosine, hypoxanthine, xanthine, and uric acid) were unchanged. In addition, gliosis was observed in both striatum and substantia nigra compacta (SNc). Sections of SNc showed some terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end labeling (TUNEL)-positive cells. Neurochemical parameters of dopaminergic activity showed a trend toward recovery 3 days after MPTP discontinuance. At this time point, TUNEL-positive cells were detected in SNc; some of them showed nuclei with neuronal morphology. A late (days 6-11) increase in striatal dopamine oxidative metabolism, ascorbic acid oxidative status, and catabolites of high-energy phosphates were observed concomitant with nigral neuron and nigrostriatal glial cell apoptotic death, as revealed by TUNEL, acridine orange, and Hoechst staining, and transmission electron microscopy. These data suggest that MPTP-induced activation/apoptotic death of glial cells plays a key role in the sequential linkage of neurochemical and cellular events leading to dopaminergic nigral neuron apoptotic death

    Manganese and 1-methyl-4-(2′-ethylphenyl)-1,2,3,6-tetrahydropyridine induce apoptosis in PC12 cells

    No full text
    Oxidative stress is thought to play a key role both in the neurotoxin MPTP- and manganese (Mn)-induced neurotoxicity and in apoptotic cell death. In the present study, we report that Mn and the MPTP analogue 1-methyl-4-(2′-ethylphenyl)-1,2,3,6-tetrahydropyridine (2′Et-MPTP), which is metabolized by MAO-A to 1-methyl-4-(2′-ethylphenyl)-pyridinium ion (at concentrations of 0.5 and 1.0 mM), induced apoptosis in PC12 cells. Apoptosis was tested by terminal deoxynucleotidyl transferase-mediated 2′-deoxyuridine-5′-triphosphate nick end labelling (TUNEL) technique, flow cytometry and fluorescence microscopy. Both Mn and 2′Et-MPTP induced also a time-dependent decrease in cell viability, as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Only Mn-induced apoptosis and decrease in cell viability were inhibited by the antioxidant ascorbic acid. We conclude that apoptosis may be an important mechanism of cell death in MPTP- and Mn-induced parkinsonism. However, an oxidative stress mechanism may be recognized only in the Mn-induced apoptosis

    Role of oxidative stress in the manganese and 1-methyl-4-(2′-ethylphenyl)-1,2,3,6-tetrahydropyridine-induced apoptosis in PC12 cells

    No full text
    Oxidative stress is thought to play a key role in the apoptotic death of several cellular systems, including neurons. Oxidative stress is proposed also as a mechanism of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- and manganese (Mn)-induced neuronal death. We have recently shown that Mn and the MPTP analogue 1-methyl-4-(2′-ethylphenyl)-1,2,3,6-tetrahydropyridine (2′Et-MPTP), which is metabolized by MAO-A to 1-methyl-4-(2′-ethylphenyl)-pyridinium ion, induce apoptosis in PC12 cells. In the present study, we evaluated the effects of deprenyl and the antioxidant drugs N-acetylcysteine (NAC) and ascorbic acid (AA) on Mn- and 2′Et-MPTP-induced apoptosis in PC12 cells. Apoptosis was tested by terminal deoxynucleotidyl transferase-mediated 2′-deoxy-uridine-5′-triphosphate nick end labelling (TUNEL) technique, flow cytometry and fluorescence microscopy. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Mn-induced apoptosis and decrease in cell viability was inhibited by the antioxidants NAC and AA. Deprenyl failed to inhibit the above Mn effects. Neither NAC, AA nor deprenyl were able to inhibit both 2′Et-MPTP-induced apoptosis and decrease in cell viability. These results confirm that apoptosis may be an important mechanism of cell death in MPTP- and Mn-induced parkinsonism. However, an oxidative stress mechanism may be recognized, at least in vitro, only in the Mn-induced apoptosis

    Analysis of the mechanism of d-amphetamine-and apomorphine-induced changes of ascorbic acid catabolism in discrete brain areas of the rat

    No full text
    Ascorbic acid (AA) levels and dehydroascorbic acid/ascorbic acid (DHAA/AA) ratios were determined in hypothalamus, striatum, and remaining brain of male Wistar rats, after single or repeated injections of d-amphetamine (1.8 mg/kg/day s.c.), apomorphine (1.0 mg/kg/day s.c.), and/or haloperidol (0.1 mg/kg/day i.p.). Major changes were observed in hypothalamus, in which all drugs significantly increased DHAA/AA ratio. Apomorphine and haloperidol consistently decreased AA level as well. The DHAA/AA ratio increase was observed also when apomorphine and d-amphetamine were associated with haloperidol. In striatum, apomorphine (single) and d-amphetamine (repeated) injections increased DHAA/AA ratio; such AA oxidation increase was inhibited by haloperidol; the increase (d-amphetamine) or decrease (apomorphine) of AA levels were also inhibited by haloperidol; haloperidol alone did not modify DHAA/AA ratio and induced minor changes of striatal AA level. In remaining brain, apomorphine (single) and d-amphetamine (repeated) treatment increased DHAA/AA ratio; such increase was observed also when haloperidol was associated with apomorphine or d-amphetamine; moreover, haloperidol by itself increased AA oxidation, although to a lesser extent than it did in hypothalamus. It is concluded that AA catabolism can be activated in the rat striatum by a dopaminergic mechanism; in hypothalamus and in remaining brain, the AA catabolism activation appears rather to be a non-specific effect of the pharmacological manipulation

    Possible involvement of nuclei in cadmium-induced modifications of cultured cells

    No full text
    Reduced metaphase number and shortening of metaphase chromosomes were detected in McCoy cells exposed to 100 μM CdS04 (maximal exposure time: 7 h). One hour exposure to 109Cd was enough to label the cell nucleus. This possibly suggests an early nuclear involvement in Cd-induced cell damage

    Endogenous melatonin protects L-DOPA from autoxidation in the striatal extracellular compartment of the freely moving rat: potential implication for long-term L-DOPA therapy in Parkinson's disease

    No full text
    We previously showed, using microdialysis, that autoxidation of exogenous L-dihydroxyphenylalanine (L-DOPA) occurs in vivo in the extracellular compartment of the freely moving rat, with a consequent formation of L-DOPA semiquinone (L-DOPA-SQ). In the present study, intrastriatal infusion of L-DOPA (1.0 μm for 200 min) increased dialysate L-DOPA concentrations (maximum increases up to 116-fold baseline values); moreover, L-DOPA-SQ was detected in dialysates. Individual dialysate concentrations of L-DOPA were negatively correlated with those of L-DOPA-SQ. Co-infusion of N-acetylcysteine (100 μm) or melatonin (50 μm) increased L-DOPA (up to 151- and 246-fold, respectively) and decreased L-DOPA-SQ (by about 53% and 87%, respectively) dialysate concentrations. Systemic L-DOPA [25 mg/kg intraperitoneally (i.p.) twice in a 12-h interval] significantly increased striatal baseline dialysate concentrations of L-DOPA and decreased dopamine (DA) and ascorbic acid (AsAc) concentrations, when compared with controls. Following systemic L-DOPA, L-DOPA-SQ was detected in dialysates. Endogenous melatonin was depleted in rats maintained on a 24-h light cycle for 1 wk. In melatonin-depleted rats, systemic L-DOPA induced a smaller increase in dialysate L-DOPA, a greater increase in L-DOPA-SQ formation, and a greater reduction in DA and AsAc dialysate concentrations. Co-administration of melatonin (5.0 mg/kg, i.p., twice in a 12-h interval) with L-DOPA, in control as well as in light-exposed rats, significantly increased dialysate L-DOPA concentrations, greatly inhibited L-DOPA-SQ formation, and restored up to the control values dialysate DA and AsAc concentrations. These findings demonstrate that endogenous melatonin protects exogenous L-DOPA from autoxidation in the extracellular compartment of the striatum of freely moving rats; moreover, systemic co-administration of melatonin with L-DOPA markedly increases striatal L-DOPA bioavailability in control as well as in melatonin-depleted rats. These results may be of relevance to the long-term L-DOPA therapy of Parkinson's disease

    Effects of allopurinol on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurochemical changes in the striatum and in the brainstem of the rat

    No full text
    Levels of uric acid, xanthine, hypoxanthine, ascorbic acid (AA), dehydroascorbic acid (DHAA), glutathione (GSH), noradrenaline (NA), dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium ion (MPP+) were determined in the striatum and/or in the brainstem of 3-month-old male Wistar rats, given allopurinol (500 mg/kg day by gavage) for 3 days before a single MPTP 52 mg/kg dose i.p. Allopurinol alone decreased uric acid and hypoxanthine levels in the striatum and in the brainstem; moreover, allopurinol increased AA oxidation and decreased striatal DA metabolites. Allopurinol affected neither regional MPTP and MPP+ levels nor the MPTP-induced inhibition of striatal DA oxidative metabolism. On the contrary, the MPTP-induced increase in uric acid levels and decrease in xanthine, hypoxanthine and NA levels were fully antagonised. Such findings demonstrate that the claimed MPP(+)-induced oxidative stress mediated by xanthine oxidase may be involved at least in the NA depletion; moreover, uric acid may have a physiological role as an active component of the neuronal antioxidant pool

    Effects of cortical ablation on apomorphine- and scopolamine-induced changes in dopamine turnover and ascorbic acid catabolism in the rat striatum

    No full text
    Levels of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), ascorbic acid and dehydroascorbic acid (DHAA) were measured by HPLC in the striatum of rats whose fronto-parietal cortex had been unilaterally ablated after a single injection of apomorphine (1 mg/kg s.c.), scopolamine (0.6 mg/kg s.c.) or L-glutamate (500 mg/kg i.p.). Unilateral cortical ablation decreased striatal levels of glutamate in both striata ipsilateral (35%) and contralateral (17&#x2013;25%) to the lesion. Apomorphine and scopolamine significantly increased (+94 and +122%, respectively) the DHAA/ ascorbic acid ratio in the striata ipsilateral to the lesion in unoperated and sham-operated rats (+72 and +34%, respectively), but both drugs failed to increase it in ablated rats. L-Glutamate significantly increased the DHAA/ ascorbic acid ratio in unoperated (+53%) and ablated rats (+37%). The increase in sham-operated rats (+34%) did not reach statistical significance. Apomorphine and scopolamine significantly decreased the DOPAC/DA ratio in the striata ipsilateral to the lesion of unoperated, sham-operated and ablated rats. The decrease in the DOPAC/DA ratio induced only minor changes in striatal DA and DOPAC levels. We conclude that the apomorphine- and scopolamine-induced increase in ascorbic acid oxidation in the striatum requires intact cortico-striatal glutamatergic pathways. Cortical ablation potentiates the apomorphine- and scopolamine-induced inhibition of striatal DA turnover

    The Effects of cortical ablation on d-amphetamine-induced changes in striatal dopamine turnover and ascorbic acid catabolism in the rat

    No full text
    Dopamine (DA). 3,4-dihydroxyphenylacetic acid (DOPAC), ascorbic acid (AA) and dehydroascorbic acid (DHAA) levels were determined by HPLC in the striatal synaptosomal fraction and in the whole striatum of rats, whose fronto-parietal cortex had been bilaterally ablated, after a single injection of d-amphetamine (2.0 mg/kg i.p.). d-Amphetamine significantly increased the DHAA/AA ratio in unoperated and sham-operated rats, but failed to increase it in ablated rats, as compared to pertinent saline-treated groups. In the synaptosomal fraction, d-amphetamine significantly decreased the DHAA/AA ratio in unoperated, sham-operated and ablated rats. d-Amphetamine significantly decreased the DOPAC/DA ratio in the whole striatum and significantly increased it in the striatal synaptosomal fraction in all experimental groups. Cortical ablation greatly increased d-amphetamine-induced motor hyperactivity. We conclude that the d-amphetamine-induced increase in AA striatal oxidation requires integrity of the cortico-striatal glutamatergic pathways. Further, AA oxidation occurs in the extracellular space. The cortico-striatal glutamatergic pathways exert an inhibitory modulation on d-amphetamine behavioral effects
    corecore