19 research outputs found

    Lactobacillus rhamnosus GG encapsulation by spray-drying: milk proteins clotting control to produce innovative matrices

    Get PDF
    A well-known probiotic strain, L.\ua0rhamnosus GG, was encapsulated by spray-drying in milk water-insoluble matrices upon reconstitution in hot water by exploiting and controlling the clotting reaction of milk proteins during the process. The feed solution, composed of probiotic bacteria and milk proteins, was or not subjected to the action of chymosin, a proteolytic enzyme. To optimize microencapsulation efficiency, different outlet air temperatures were tested (55, 70 and 85\ua0°C). After spray-drying, small microparticles were recovered for further characterization. All drying conditions led to excellent bacterial survival rates

    Review of High-Frequency Ultrasounds Emulsification Methods and Oil/Water Interfacial Organization in Absence of any Kind of Stabilizer

    No full text
    Emulsions are multiphasic systems composed of at least two immiscible phases. Emulsion formulation can be made by numerous processes such as low-frequency ultrasounds, high-pressure homogenization, microfluidization, as well as membrane emulsification. These processes often need emulsifiers’ presence to help formulate emulsions and to stabilize them over time. However, certain emulsifiers, especially chemical stabilizers, are less and less desired in products because of their negative environment and health impacts. Thus, to avoid them, promising processes using high-frequency ultrasounds were developed to formulate and stabilize emulsifier-free emulsions. High-frequency ultrasounds are ultrasounds having frequency greater than 100 kHz. Until now, emulsifier-free emulsions’ stability is not fully understood. Some authors suppose that stability is obtained through hydroxide ions’ organization at the hydrophobic/water interfaces, which have been mainly demonstrated by macroscopic studies. Whereas other authors, using microscopic studies, or simulation studies, suppose that the hydrophobic/water interfaces would be rather stabilized thanks to hydronium ions. These theories are discussed in this review

    Antioxidant activity and bioaccessibility of phenols-enriched edible casein/caseinate coatings during in vitro digestion

    No full text
    International audienceActive films were developed for food coating applications. Entrapped phenol susceptibility to digestion was studied. Sodium caseinate (Na-CN) coatings were formulated with 0, 10, 20% Casein (CN) incorporating selected phenols as model antioxidants. This study investigated phenol/CN/Na-CN interactions, in vitro bioaccessibility of phenols and CN role in phenols retention during in vitro gastric and pancreatic digestion. The antioxidant activity of catechin (CAT), rutin (RUT), chlorogenic acid (CHL), gallic acid (GAL), and tannic acid (TA) in coatings varied with the phenolic compound type and CN concentration and was related to phenol hydrophobic binding to CN. ABTS method gave activities ranged from 412 down to 213, and DPPH method gave values from 291.7 to 190.9. An inverse relationship was found with CN content due to CN/phenol interaction. During digestion, a part of phenols was degraded by alkaline pH of pancreatic fluid. Simultaneously, CN proteolysis led to release of phenols and the bioaccessibility index remained above 80% for all phenols. The results suggested the possibility of protecting phenols against oxidation and digestive alteration by entrapment in CN and Na-CN coating films. These positive results showed the ability to produce antioxidant-enriched edible coatings to increase food protection and phenol nutritional intake

    A fast method to assess the composition of a polyolefin: an application to compliance testing of food contact materials

    No full text
    For plastics materials intended to be in contact with food, recent EU regulations, 72/2002/EC and 1935/2004/EC, enforce the assessment of the migration of 502 substances of the 932 positively listed substances. As mathematical modeling has been proposed to overcome such considerable effort in particular by providing maximum acceptable concentrations in the formulation, the compliance testing problem is efficiently reduced to the identification of substances and to their extent in initial materials. This work examines a fast identification and quantification procedure based on a semisupervised deconvolution procedure of FTIR spectra of polymer extracts in dichloromethane. The inversion procedure was implemented as a Tikhonov least-square problem and designed to work on large and open dictionary of substances by combining both spectra of reference additives and normalized responses of typical chemical functions. The sparsity of the overall solution was fulfilled with non-negativity constraints, while traces were detected by an iterative reweighting and stochastic resonance. The whole methodology was calibrated onto 21 typical additives of polyolefins and satisfactory tested on numerical examples and on extracts of processed films in high-density polyethylene including up to eight unknown compounds. Maps of possible confusions and biases were generated for all tested substances. The mass balance laws for molecules belonging to similar classes of additives were particularly highlighted

    Interest of Pickering Emulsions for Sustainable Micro/Nanocellulose in Food and Cosmetic Applications

    No full text
    In the present review, natural and non-toxic particles made of micro/nanocellulose were specifically targeted as stabilizers of emulsions located at dispersed and continuous phases interfaces (called Pickering Emulsions, PEs). PEs are biphasic systems stabilized by solid particles with a recent interest in food and cosmetic domains. PEs have been more and more studied in the last ten years due to their advantages compared to conventional emulsions with surfactants. PEs have already been stabilized with various types of particles and particularly cellulose. Even if some studies showed that PEs were more stable when cellulose was chemically modified, numerous other recent studies showed that unmodified micro/nanocellulose is also promising biomaterial to stabilize PEs. Micro/nanocelluloses can be extracted by various green processes from numerous agricultural wastes and co-products, as banana peels, corncob, ginkgo seed shells, lime residues, mangosteen rind, oil palm empty fruit bunches, pistachio shells, as well as wheat straw. Main green processes used to treat cellulose are grinding, high pressure homogenization, microfluidization, enzymatic hydrolysis, subcritical water, extrusion, electron beam irradiation, cryocrushing, microwaves or sonication. PEs formulated with cellulose clearly participate to a global sustainable development but, additional studies will be necessary to better understand PEs stability and improve properties

    Relationships between dairy powder surface composition and wetting properties during storage: importance of residual lipids

    No full text
    The relationships between powder surface composition and powder rehydration properties under variable conditions of storage are investigated in this paper. A rheological approach was used to evaluate the modifications induced by storage on the rehydration properties of native phosphocaseinate powder. Concurrently, the powder surface composition (i.e., lactose, proteins, and lipids) was evaluated by X-ray photoelectron spectroscopy (XPS). A strong correlation was found between the powder wetting time lengthening and the migration of lipids on the powder surface during storage. XPS studies indicated also an over-representation of lipids on the powder surface (6%) in comparison with total lipids (0.4%) even on fresh powder before storage. Detailed investigation of powder lipids revealed the presence of high levels of polar lipids (66% compared with <1% in milk lipids). Their amphiphilic nature and their melting points could explain the extensive enrichment of lipids observed at the powder surface during processing and storage
    corecore