4 research outputs found
DMRT5, DMRT3, and EMX2 Cooperatively Repress at the Pallium-Subpallium Boundary to Maintain Cortical Identity in Dorsal Telencephalic Progenitors
Specification of dorsoventral regional identity in progenitors of the developing telencephalon is a first pivotal step in the development of the cerebral cortex and basal ganglia. Previously, we demonstrated that the two zinc finger doublesex and mab-3 related (Dmrt) genes, Dmrt5 (Dmrta2) and Dmrt3, which are coexpressed in high caudomedial to low rostrolateral gradients in the cerebral cortical primordium, are separately needed for normal formation of the cortical hem, hippocampus, and caudomedial neocortex. We have now addressed the role of Dmrt3 and Dmrt5 in controlling dorsoventral division of the telencephalon in mice of either sex by comparing the phenotypes of single knock-out (KO) with double KO embryos and by misexpressing Dmrt5 in the ventral telencephalon. We find that DMRT3 and DMRT5 act as critical regulators of progenitor cell dorsoventral identity by repressing ventralizing regulators. Early ventral fate transcriptional regulators expressed in the dorsal lateral ganglionic eminence, such as Gsx2, are upregulated in the dorsal telencephalon of Dmrt3;Dmrt5 double KO embryos and downregulated when ventral telencephalic progenitors express ectopic Dmrt5. Conditional overexpression of Dmrt5 throughout the telencephalon produces gene expression and structural defects that are highly consistent with reduced GSX2 activity. Further, Emx2;Dmrt5 double KO embryos show a phenotype similar to Dmrt3;Dmrt5 double KO embryos, and both DMRT3, DMRT5 and the homeobox transcription factor EMX2 bind to a ventral telencephalon-specific enhancer in the Gsx2 locus. Together, our findings uncover cooperative functions of DMRT3, DMRT5, and EMX2 in dividing dorsal from ventral in the telencephalon.
SIGNIFICANCE STATEMENT We identified the DMRT3 and DMRT5 zinc finger transcription factors as novel regulators of dorsoventral patterning in the telencephalon. Our data indicate that they have overlapping functions and compensate for one another. The double, but not the single, knock-out produces a dorsal telencephalon that is ventralized, and olfactory bulb tissue takes over most remaining cortex. Conversely, overexpressing Dmrt5 throughout the telencephalon causes expanded expression of dorsal gene determinants and smaller olfactory bulbs. Furthermore, we show that the homeobox transcription factor EMX2 that is coexpressed with DMRT3 and DMRT5 in cortical progenitors cooperates with them to maintain dorsoventral patterning in the telencephalon. Our study suggests that DMRT3/5 function with EMX2 in positioning the pallial-subpallial boundary by antagonizing the ventral homeobox transcription factor GSX2
Etude du rÎle des facteurs de transcription Dmrt3 et Dmrt5 dans le développement cortical: Dmrt3 et Dmrt5 maintiennent l'identité corticale dans les progéniteurs du télencéphale dorsal au cours du développement
La spĂ©cification de lâidentitĂ© ventrale ou dorsale des progĂ©niteurs au cours du dĂ©veloppement du tĂ©lencĂ©phale est la premiĂšre Ă©tape cruciale du dĂ©veloppement du cortex cĂ©rĂ©bral. Les gĂšnes doublesex and mab-3 related (Dmrt) Dmrt3 et Dmrt5 codent pour des facteurs de transcription Ă doigt de Zinc. Ces gĂšnes sont coexprimĂ©s selon un gradient fort caudomĂ©dialement Ă plus faible rostrolatĂ©ralement dans le primordium du cortex cĂ©rĂ©bral. Nous avons dâabord dĂ©montrĂ© quâils Ă©taient tous deux nĂ©cessaires pour la formation normale de lâhĂšme corticale, lâhippocampe et le nĂ©ocortex caudomĂ©dian. Nous avons plus rĂ©cemment adressĂ© le rĂŽle de Dmrt3 et Dmrt5 dans le contrĂŽle de la rĂ©gionalisation dorsale/ventrale du tĂ©lencĂ©phale chez la souris, en comparant les phĂ©notypes dâembryons simple knock out (KO) aux double KO (dKO), et par une expression ectopique de Dmrt5 dans le tĂ©lencĂ©phale ventral. Nous avons mis en Ă©vidence que DMRT3 et DMRT5 agissent comme des rĂ©gulateurs critiques de lâidentitĂ© dorsoventrale des cellules progĂ©nitrices en rĂ©primant les rĂ©gulateurs ventralisants. Les rĂ©gulateurs transcriptionnels prĂ©coces de la destinĂ©e ventrale exprimĂ©s dans la partie dorsale de lâĂ©minence ganglionnaire latĂ©rale tel que Gsx2 sont rĂ©gulĂ©s positivement dans le tĂ©lencĂ©phale dorsal embryons dKO et rĂ©gulĂ©s nĂ©gativement lorsque les progĂ©niteurs du tĂ©lencĂ©phale ventral expriment Dmrt5 de maniĂšre ectopique. La surexpression conditionnelle de Dmrt5 au sein du tĂ©lencĂ©phale entier gĂ©nĂšre un profil dâexpression et des dĂ©fauts trĂšs similaires Ă ceux observĂ©s lors dâune activitĂ© Gsx2 diminuĂ©e. De plus, les embryons Emx2 ;Dmrt5 double KO montrent un phĂ©notype similaire Ă celui des embryons dKO. DMRT3, DMRT5 et le facteur de transcription Ă homĂ©obox EMX2 peuvent se lier Ă un enhancer spĂ©cifique du tĂ©lencĂ©phale ventral dans le locus Gsx2. Ensemble, nos rĂ©sultats montrent des fonctions coopĂ©ratives de DMRT3, DMRT5 et EMX2 dans la distinction entre identitĂ© dorsale et ventrale au sein du tĂ©lencĂ©phale.Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe
Loss of <i>Dmrt5</i> affects the formation of the subplate and early corticogenesis
Dmrt5 (Dmrta2) and Dmrt3 are key regulators of cortical patterning and progenitor proliferation and differentiation. In this study, we show an altered apical to intermediate progenitor transition, with a delay in SP neurogenesis and premature birth of Ctip(2+) cortical neurons in Dmrt5(-/- )mice. In addition to the cortical progenitors, DMRT5 protein appears present in postmitotic subplate (SP) and marginal zone neurons together with some migrating cortical neurons. We observed the altered split of preplate and the reduced SP and disturbed radial migration of cortical neurons into cortical plate in Dmrt5(-/-) brains and demonstrated an increase in the proportion of multipolar cells in primary neuronal cultures from Dmrt5(-/-)embryonic brains. Dmrt5 affects cortical development with specific time sensitivity that we described in two conditional mice with slightly different deletion time. We only observed a transient SP phenotype at E15.5, but not by E18.5 after early (Dmit5(lox/lox);Emx1(Cre)) but not late (Dmrt5(lox/lox);Nestin(Cre)) deletion of Dmrt5. SP was less disturbed in Dmrt5(lox/lox);Emx1(Cre) and Dmrt3(-/- )brains than in Dmrt5(-/-) and affects dorsomedial cortex more than lateral and caudal cortex. Our study demonstrates a novel function of Dmrt5(-/-) in the regulation of early SP formation and radial cortical neuron migration.Collaborative grant from the Wiener-Anspach Foundation to E.J.B. and Z.M. (Role of the Dmrt5 Transcription Factor in the Development of the Earliest Cortical Circuits); work in the laboratory of E.J.B was supported by grants from the Fund for Scientific Research (FRFC 6973823, CDR 29148846); Walloon Region (First International project "NEURON"); Jean Brachet Foundation; work in the laboratory of Z.M. was funded by Medical Research Council (UK), (G00900901, MR/N026039/1); Royal Society and Anatomical Society. Work in the laboratory of T.T. was supported by the Medical Research Council (MR/K013750/1)
DMRT5 together with DMRT3 directly controls hippocampus development and neocortical area map formation
Mice that are constitutively null for the zinc finger doublesex and mab-3 related (Dmrt) gene, Dmrt5/Dmrta2, show a variety of patterning abnormalities in the cerebral cortex, including the loss of the cortical hem, a powerful cortical signaling center. In conditional Dmrt5 gain of function and loss of function mouse models, we generated bidirectional changes in the neocortical area map without affecting the hem. Analysis indicated that DMRT5, independent of the hem, directs the rostral-to-caudal pattern of the neocortical area map. Thus, DMRT5 joins a small number of transcription factors shown to control directly area size and position in the neocortex. Dmrt5 deletion after hem formation also reduced hippocampal size and shifted the position of the neocortical/paleocortical boundary. Dmrt3, like Dmrt5, is expressed in a gradient across the cortical primordium. Mice lacking Dmrt3 show cortical patterning defects akin to but milder than those in Dmrt5 mutants, perhaps in part because Dmrt5 expression increases in the absence of Dmrt3 DMRT5 upregulates Dmrt3 expression and negatively regulates its own expression, which may stabilize the level of DMRT5. Together, our findings indicate that finely tuned levels of DMRT5, together with DMRT3, regulate patterning of the cerebral cortex