515 research outputs found
The biogeochemistry of microbial mats, stromatolites and the ancient biosphere
Stromatolites offer an unparalleled geologic record of early life, because they constitute the oldest and most abundant recognizable remains of microbial ecosystems. Microbial mats are living homologs of stromatolites; thus, the physiology of the microbiota as well as the processes which create those features of mats (e.g., biomarker organic compounds, elemental and stable isotopic compositions) which are preserved in the ancient record. Observations of the carbon isotopic composition (delta C-13) of stromatolites and microbial mats were made and are consistent with the hypothesis that atmospheric CO2 concentrations have declined by at least one to two orders of magnitude during the past 2.5 Ga. Whereas delta C-13 values of carbonate carbon average about 0 permil during both the early and mid-Proterozoic, the delta C-13 values of stromatolitic organic matter increase from an average of -35 between 2.0 and 2.6 Ga ago to an average of about -28 about 1.0 Ga ago. Modern microbial mats in hypersaline environments have delta C-13 values typically in the range of -5 to -9, relative to an inorganic bicarbonate source at 0 permil. Both microbial mats and pur cultures of cyanobacteria grown in waters in near equilibrium with current atmospheric CO2 levels exhibit minimal discrimination against C-13. In contrast, hot spring cyanobacterial mats or cyanobacterial cultures grown under higher CO2 levels exhibit substantially greater discrimination. If care is taken to compare modern mats with stromatolites from comparable environments, it might be possible to estimate ancient levels of atmospheric CO2. In modern microbial mats, a tight coupling exists between photosynthetic organic carbon production and subsequent carbon oxidation, mostly by sulfate reduction. The rate of one process fuels a high rate of the other, with much of the sulfate reduction occurring within the same depth interval as oxygenic photosynthesis. Other aspects of this study are presented
Stochastic Weighted Graphs: Flexible Model Specification and Simulation
In most domains of network analysis researchers consider networks that arise
in nature with weighted edges. Such networks are routinely dichotomized in the
interest of using available methods for statistical inference with networks.
The generalized exponential random graph model (GERGM) is a recently proposed
method used to simulate and model the edges of a weighted graph. The GERGM
specifies a joint distribution for an exponential family of graphs with
continuous-valued edge weights. However, current estimation algorithms for the
GERGM only allow inference on a restricted family of model specifications. To
address this issue, we develop a Metropolis--Hastings method that can be used
to estimate any GERGM specification, thereby significantly extending the family
of weighted graphs that can be modeled with the GERGM. We show that new
flexible model specifications are capable of avoiding likelihood degeneracy and
efficiently capturing network structure in applications where such models were
not previously available. We demonstrate the utility of this new class of
GERGMs through application to two real network data sets, and we further assess
the effectiveness of our proposed methodology by simulating non-degenerate
model specifications from the well-studied two-stars model. A working R version
of the GERGM code is available in the supplement and will be incorporated in
the gergm CRAN package.Comment: 33 pages, 6 figures. To appear in Social Network
Exopaleontology and the search for a fossil record on Mars
Although present Martian surface conditions appear unfavorable for life as we know it, there is compelling geological evidence that the climate of early Mars was much more Earth-like, with a denser atmosphere and abundant surface water. The fact that life developed on the Earth within the first billion years of its history makes it quite plausible that life may have also developed on Mars. If life did develop on Mars, it is likely to have left behind a fossil record. This has led to the development of a new subdiscipline of paleontology, herein termed 'exopaleontology', which deals with the exploration for fossils on other planets. The most important factor enhancing microbial fossilization is the rapid entombment of microorganisms by fine-grained, stable mineral phases, such as silica, phosphate, or carbonate. The oldest body fossils on Earth are preserved in this way, occurring as permineralized cells in fine-grained siliceous sediments (cherts) associated with ancient volcanic terranes in Australia and South Africa. Modern terrestrial environments where minerals may precipitate in the presence of microorganisms include subaerial thermal springs and shallow hydrothermal systems, sub-lacustrine springs and evaporitic alkaline lakes, zones of mineralization within soils where 'hardpans' (e.g. calcretes, silcretes) form, and high latitude frozen soils or ground ice
Isotopic composition of Murchison organic compounds: Intramolecular carbon isotope fractionation of acetic acid. Simulation studies of cosmochemical organic syntheses
Recently, in our laboratories, samples of Murchison acetic acid were decarboxylated successfully and the carbon isotopic composition was measured for the methane released by this procedure. These analyses showed significant differences in C-13/C-12 ratios for the methyl and carboxyl carbons of the acetic acid molecule, strongly suggesting that more than one carbon source may be involved in the synthesis of the Murchison organic compounds. On the basis of this finding, laboratory model systems simulating cosmochemical synthesis are being studied, especially those processes capable of involving two or more starting carbon sources
Exobiology site priorities for Mars Pathfinder
The fact that life developed on the Earth within the first billion years of its history makes it quite plausible that life may have also developed on Mars. If life did develop on Mars, it undoubtedly left behind a fossil record. Such a fossil record is likely to be more accessible than either subsurface environments that may harbor life, or scattered 'oases' that may be present at the surface. Consequently, the post-Viking approach of Mars exobiology has shifted focus to search for evidence of an ancient martian biosphere. This has led to the emergence of a new subdiscipline of paleontology, herein termed 'exopaleontology', which deals with the exploration for fossils on other planets and whose core concepts derive from Earth-based Precambrian paleontology, microbial ecology, and sedimentology. Potential targets on Mars for subaqueous spring deposits, sedimentary cements, and evaporites are ancient terminal lake basins where hydrological systems could have endured for some time under arid conditions. Potential targets for the Mars Pathfinder mission include channeled impact craters and areas of deranged drainage associated with outflows in northwest Arabia and Xanthe Terra, where water may have ponded temporarily to form lakes. The major uncertainty of such targets is their comparatively younger age and the potentially short duration of hydrological activity compared to older paleolake basins found in the southern hemisphere. However, it has been suggested that cycles of catastrophic flooding associated with Tharsis volcanism may have sustained a large body of water, Oceanus Borealis, in the northern plains area until quite late in martian history. Although problematic, the shoreline areas of the proposed northern ocean provide potential targets for a Mars Pathfinder mission aimed at exploring for carbonates or other potentially fossiliferous marine deposits. Carbonates and evaporites possess characteristic spectra signatures in the near-infrared and should be detectable using rover-based spectroscopy and other methods for in situ mineralogical analysis
Giant Magnetic Moments of Nitrogen Stabilized Mn Clusters and Their Relevance to Ferromagnetism in Mn Doped GaN
Using first principles calculations based on density functional theory, we
show that the stability and magnetic properties of small Mn clusters can be
fundamentally altered by the presence of nitrogen. Not only are their binding
energies substantially enhanced, but also the coupling between the magnetic
moments at Mn sites remains ferromagnetic irrespective of their size or shape.
In addition, these nitrogen stabilized Mn clusters carry giant magnetic moments
ranging from 4 Bohr magnetons in MnN to 22 Bohr magnetons in Mn_5N. It is
suggested that the giant magnetic moments of Mn_xN clusters may play a key role
in the ferromagnetism of Mn doped GaN which exhibit a wide range (10K - 940K)
of Curie temperatures
Mineralogical and Geochemical Trends in a Fluviolacustrine Sequence in Gale Crater, Mars
The Mars Science Laboratory rover, Curiosity, landed at Gale crater in August 2012 and has been investigating a sequence of dominantly fluviolacustrine sediments deposited 3.6-3.2 billion years ago. Curiosity collects quantitative mineralogical data with the CheMin XRD/XRF instrument and quantitative chemical data with the APXS and ChemCam instruments. These datasets show stratigraphic mineralogical and geochemical variability that suggest a complex aqueous history. The Murray Formation, primarily composed of fine-laminated mudstone, has been studied in detail since the arrival at the Pahrump Hills in September 2014. CheMin data from four samples show variable amounts of iron oxides, phyllosilicates, sulfates, amorphous and crystalline silica, and mafic silicate minerals. Geochemical data throughout the section show that there is significant variability in Zn, Ni, and Mn concentrations. Mineralogical and geochemical trends with stratigraphy suggest one of possibly several aqueous episodes involved alteration in an open system under acidic pH, though other working hypotheses may explain these and other trends. Data from the Murray Formation contrast with those collected from the Sheepbed mudstone located approximately 60 meters below the base of the Murray Formation, which showed evidence for diagenesis in a closed system at circumneutral pH. Ca-sulfates filled late-stage veins in both mudstones
Calculation of AGARD Wing 445.6 Flutter Using Navier-Stokes Aerodynamics
An unsteady, 3D, implicit upwind Euler/Navier-Stokes algorithm is here used to compute the flutter characteristics of Wing 445.6, the AGARD standard aeroelastic configuration for dynamic response, with a view to the discrepancy between Euler characteristics and experimental data. Attention is given to effects of fluid viscosity, structural damping, and number of structural model nodes. The flutter characteristics of the wing are determined using these unsteady generalized aerodynamic forces in a traditional V-g analysis. The V-g analysis indicates that fluid viscosity has a significant effect on the supersonic flutter boundary for this wing
- …