18 research outputs found

    Role of T-type calcium current in identified D-hair mechanoreceptor neurons studied in vitro

    Get PDF
    Different subsets of dorsal root ganglion (DRG) mechanoreceptors transduce low- and high-intensity mechanical stimuli. It was shown recently that, in vivo, neurotrophin-4 (NT-4)-dependent D-hair mechanoreceptors specifically express a voltage-activated T-type calcium channel (Ca(v)3.2) that may be required for their mechanoreceptive function. Here we show that D-hair mechanoreceptors can be identified in vitro by a rosette-like morphology in the presence of NT-4 and that these rosette neurons are almost all absent in DRG cultures taken from NT-4 knock-out mice. In vitro identification of the D-hair mechanoreceptor allowed us to explore the electrophysiological properties of these cells. We demonstrate that the T-type Ca(v)3.2 channel induced slow membrane depolarization that contributes to lower the voltage threshold for action potential generation and controls spike latency after stimulation of D-hair mechanoreceptors. Indeed, the properties of the T-type amplifier are particularly well suited to explain the high sensitivity of D-hair mechanoreceptors to slowly moving stimuli

    TRPV4 channels mediate the infrared laser-evoked response in sensory neurons

    Get PDF
    Infrared laser irradiation has been established as an appropriate stimulus for primary sensory neurons under conditions where sensory receptor cells are impaired or lost. Yet, development of clinical applications has been impeded by lack of information about the molecular mechanisms underlying the laser-induced neural response. Here, we directly address this question through pharmacological characterization of the biological response evoked by midinfrared irradiation of isolated retinal and vestibular ganglion cells from rodents. Whole cell patch-clamp recordings reveal that both voltage-gated calcium and sodium channels contribute to the laser-evoked neuronal voltage variations (LEVV). In addition, selective blockade of the LEVV by micromolar concentrations of ruthenium red and RN 1734 identifies thermosensitive transient receptor potential vanilloid channels as the primary effectors of the chain reaction triggered by midinfrared laser irradiation. These results have the potential to facilitate greatly the design of future prosthetic devices aimed at restoring neurosensory capacities in disabled patients

    Developmental changes in low and high voltage-activated calcium currents in acutely isolated mouse vestibular neurons

    No full text
    The development of low voltage-activated (LVA) and high voltage-activated (HVA) calcium currents was studied in neurons acutely dissociated from mouse vestibular ganglia at embryonic stages (E)14, 15, 17 and birth using the whole-cell patch-clamp technique.LVA current was present in almost all neurons tested at stages E14 to E17, although at birth this current was restricted to a few neurons. Two populations of neurons were characterized based on the amplitude of the LVA current. In the first population, LVA current densities decreased between E17 and birth by which time this current tended to disappear in most neurons. A second population of neurons with high density LVA current appeared at E17, and in this group the mean density increased during development.Among HVA currents, the dihydropyridine-sensitive L-type current remained constant between E15 and birth. Over the same period, the density of N- and Q-type currents continuously increased as shown using ω-conotoxin-GVIA (N-type), and high concentrations of ω-agatoxin-IVA (Q-type). The P-type current, sensitive to low concentrations of ω-agatoxin-IVA, transiently increased between E15 and E17, and then both current density and its proportion of the global current decreased.Our results reveal large modifications in the expression of voltage-dependent calcium channels during embryonic development of primary vestibular neurons. The changes in the expression of LVA current and the transient augmentation of P-type HVA current occur during a period characterized by massive neuronal growth and by the beginning of synaptogenesis. These results suggest a specific role of these currents in the ontogenesis of vestibular primary afferents
    corecore