409 research outputs found

    Zero-Point cooling and low heating of trapped 111Cd+ ions

    Full text link
    We report on ground state laser cooling of single 111Cd+ ions confined in radio-frequency (Paul) traps. Heating rates of trapped ion motion are measured for two different trapping geometries and electrode materials, where no effort was made to shield the electrodes from the atomic Cd source. The low measured heating rates suggest that trapped 111Cd+ ions may be well-suited for experiments involving quantum control of atomic motion, including applications in quantum information science.Comment: 4 pages, 6 figures, Submitted to PR

    Implementation of Grover's Quantum Search Algorithm in a Scalable System

    Full text link
    We report the implementation of Grover's quantum search algorithm in the scalable system of trapped atomic ion quantum bits. Any one of four possible states of a two-qubit memory is marked, and following a single query of the search space, the marked element is successfully recovered with an average probability of 60(2)%. This exceeds the performance of any possible classical search algorithm, which can only succeed with a maximum average probability of 50%.Comment: 4 pages, 3 figures, updated error discussio

    Phase Control of Trapped Ion Quantum Gates

    Full text link
    There are several known schemes for entangling trapped ion quantum bits for large-scale quantum computation. Most are based on an interaction between the ions and external optical fields, coupling internal qubit states of trapped-ions to their Coulomb-coupled motion. In this paper, we examine the sensitivity of these motional gate schemes to phase fluctuations introduced through noisy external control fields, and suggest techniques to suppress the resulting phase decoherence.Comment: 21 pages 12 figure

    Entanglement of Trapped-Ion Clock States

    Full text link
    A M{\o}lmer-S{\o}rensen entangling gate is realized for pairs of trapped 111^{111}Cd+^+ ions using magnetic-field insensitive "clock" states and an implementation offering reduced sensitivity to optical phase drifts. The gate is used to generate the complete set of four entangled states, which are reconstructed and evaluated with quantum-state tomography. An average target-state fidelity of 0.79 is achieved, limited by available laser power and technical noise. The tomographic reconstruction of entangled states demonstrates universal quantum control of two ion-qubits, which through multiplexing can provide a route to scalable architectures for trapped-ion quantum computing.Comment: 6 pages, 5 figure

    Towards a Deadline-Based Simulation Experimentation Framework Using Micro-Services Auto-Scaling Approach

    Get PDF
    There is growing number of research efforts in developing auto-scaling algorithms and tools for cloud resources. Traditional performance metrics such as CPU, memory and bandwidth usage for scaling up or down resources are not sufficient for all applications. For example, modeling and simulation experimentation is usually expected to yield results within a specific timeframe. In order to achieve this, often the quality of experiments is compromised either by restricting the parameter space to be explored or by limiting the number of replications required to give statistical confidence. In this paper, we present early stages of a deadline-based simulation experimentation framework using a micro-services auto-scaling approach. A case study of an agent-based simulation of a population physical activity behavior is used to demonstrate our framework

    Innovations in Simulation: Experiences with Cloud-based Simulation Experimentation

    Get PDF
    The amount of simulation experimentation that can be performed in a project can be restricted by time, especially if a model takes a long time to simulate and many replications are required. Cloud Computing presents an attractive proposition to speeding up, or extending, simulation experimentation as computing resources can be hired on demand rather than having to invest in costly infrastructure. However, it is not common practice for simulation users to take advantage of this and, arguably, rather than speeding up simulation experimentation users tend to make compromises by using unnecessary model simplification techniques. This may be due to a lack of awareness of what Cloud Computing can offer. Based on several years’ experience of innovation in this area, this article presents our experiences in developing Cloud Computing applications for simulation experimentation and discusses what future innovations might be created for the widespread benefit of our simulation community

    Ultrasensitive force and displacement detection using trapped ions

    Full text link
    The ability to detect extremely small forces is vital for a variety of disciplines including precision spin-resonance imaging, microscopy, and tests of fundamental physical phenomena. Current force-detection sensitivity limits have surpassed 1 aN/HzaN/\sqrt{Hz} (atto =10−18=10^{-18}) through coupling of micro or nanofabricated mechanical resonators to a variety of physical systems including single-electron transistors, superconducting microwave cavities, and individual spins. These experiments have allowed for probing studies of a variety of phenomena, but sensitivity requirements are ever-increasing as new regimes of physical interactions are considered. Here we show that trapped atomic ions are exquisitely sensitive force detectors, with a measured sensitivity more than three orders of magnitude better than existing reports. We demonstrate detection of forces as small as 174 yNyN (yocto =10−24=10^{-24}), with a sensitivity 390±150\pm150 yN/HzyN/\sqrt{Hz} using crystals of n=60n=60 9^{9}Be+^{+} ions in a Penning trap. Our technique is based on the excitation of normal motional modes in an ion trap by externally applied electric fields, detection via and phase-coherent Doppler velocimetry, which allows for the discrimination of ion motion with amplitudes on the scale of nanometers. These experimental results and extracted force-detection sensitivities in the single-ion limit validate proposals suggesting that trapped atomic ions are capable of detecting of forces with sensitivity approaching 1 yN/HzyN/\sqrt{Hz}. We anticipate that this demonstration will be strongly motivational for the development of a new class of deployable trapped-ion-based sensors, and will permit scientists to access new regimes in materials science.Comment: Expanded introduction and analysis. Methods section added. Subject to press embarg
    • 

    corecore