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ABSTRACT 

The amount of simulation experimentation that can be performed in a project can be restricted by time, 

especially if a model takes a long time to simulate and many replications are required. Cloud Computing 

presents an attractive proposition to speeding up, or extending, simulation experimentation as computing 

resources can be hired on demand rather than having to invest in costly infrastructure. However, it is not 

common practice for simulation users to take advantage of this and, arguably, rather than speeding up 

simulation experimentation users tend to make compromises by using unnecessary model simplification 

techniques. This may be due to a lack of awareness of what Cloud Computing can offer. Based on several 

years’ experience of innovation in this area, this article presents our experiences in developing Cloud 

Computing applications for simulation experimentation and discusses what future innovations might be 

created for the widespread benefit of our simulation community. 

 

1 INTRODUCTION 

In simulation we define a problem, build a model and then experiment with it to better understand the 

problem. For example, we might want to understand how throughput in a manufacturing system can be 

improved through changes in that system or how infection might be limited in a population through different 

lockdown strategies. We build a model of that system and then experiment with different parameters and 

configurations to see how these affect throughput or infection rate. In discrete-event simulation, each 

experiment typically has a number of replications associated with it. Let’s say the model takes 10 minutes 

to simulate and we need 10 replications per experiment. In a simple case, if we have 10 parameters with 10 

values each then we have 100 experiments. With 10 replications each experiment we have 1000 runs. 10 

minutes per run gives us 10000 minutes – around 166 hours or a week’s worth of continuous runs. If this is 
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too long then one either tries to make the model run faster through compromises and simplifications or one 

does less experimentation. If one is attempting to optimize, especially with problems involving multiple or 

many objectives, the utility of these techniques can be limited significantly by this runtime.  

The concept of speeding up, or extending, simulation experimentation by using multiple computing 

resources has been widely explored and sometimes termed distributed simulation (Taylor 2019). For 

example, by using 10 computers and sharing the runs between them we can potentially bring the runtime 

down to 16 hours – with 20 computers we can bring this down to 8 hours. In reality, due to complexities of 

scheduling and sending simulations across a communications network and sharing computations with other 

work on a computer, the speed up is never entirely linear. However, in general, one can make the claim of 

“many hands make light work!” There are many approaches to using the fixed computing resources of one 

or more enterprises (e.g. Computing Clusters, Desktop computer, etc.) to speed up an application. These 

can be complex and need local investment to set up the resource infrastructure.  

 A potentially attractive alternative is Cloud Computing. Instead of providing a local infrastructure, 

users “hire” computing resources from a Cloud to support the computing needs of their application. Cloud 

has other advantages such as remote access, quality of service, up-to-date technology, no need to implement 

costly enterprise computing infrastructure, etc. In terms of simulation these are also attractive, especially 

the idea of hiring many computing resources to speed up experimentation. Cloud-based simulation 

experimentation application can be complex and, for end user or commercial application development is 

not just “putting simulation on a cloud”. For around seven years we have investigated how advances in 

Cloud Computing could be used to speed up simulation experimentation through several multinational 

projects. Initially, this work combined the multi-cloud Platform-as-a-Service middleware CloudBroker with 

the science gateway and workflow system WS-PGRADE to produce the CloudSME Simulation Platform 

(Taylor et al. 2018). This has been used to develop several commercial high performance simulation 

experimentation applications. This approach allows developers to choose from several deployment options 

and enables them to quickly implement their simulation solution in a way that allows different clouds to be 

chosen depending on price/performance. Users choose a cloud and the number of resources needed to 

execute their simulation experiments. However, experience showed that not all cloud resources might be 

used in experimentation. To automatically scale the cloud resources needed for an application we developed 

MiCADO and adapted it for simulation experimentation (Kiss at al. 2019a; Kiss at al. 2019b ). This has 

produced more efficient cloud resource usage and is now being adopted for use to “cloud-enable” Saker 

Solution’s SakerGrid, an enterprise desktop grid that supports high speed simulation experimentation (Kite 

at al. 2011). To bring these together to contribute to the state-of-the-art of cloud-based simulation 

experimentation, this paper describes each of these advances in turn. Section 2 gives a brief review of 

related work. Section 3 presents the CloudSME Simulation Platform and its approach to cloud-based 

application development. Section 4 describes MiCADO and its approach to autoscaling. Section 5 discusses 

how MiCADO was integrated with SakerGrid. Finally, Section 5 discusses the impact these innovations 

have made and concludes the paper. 

2 RELATED WORK 

In terms of developing cloud-based environments to support simulation experimentation there has been 

other work to that described in this paper. For example, the distributed agent-based traffic simulator 

Megaffic uses adaptive resource provisioning to speed up the execution of a single simulation run (Hanai 

et al. 2015). The Scalable Electro-Mobility Simulation Cloud Service (SEMSim CS) is the cloud-based 

version of the Scalable Electro-Mobility Simulation (SEMSim) platform used to study the impact of large-

scale electromobility on a city’s infrastructure (i.e. the replacement of the majority of vehicles with electric 

ones) (Zehe et al. 2015). When an experiment is run, the two simulations are linked together as a distributed 

simulation that synchronizes simulation time advance between the discrete simulations. The D-Mason 

framework is a parallel version of the Mason library for writing and running distributed agent-based 

simulations and has been ported to cloud (Carillo et al. 2016). GridSpice (Anderson et al. 2014) is a cloud-
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based simulation platform for distributed smart power grid simulation that supports the development of 

models consisting of a transmission network, distribution networks and power generators. HPCCloud was 

developed as a cloud/web-based simulation environment platform to deliver a Software-as-a-Service that 

allows a simulation to be submitted to a cluster in a cloud and submits work to these via distributed task 

queues (OLeary et al. 2015).   

 There is less work associated with autoscaling of simulation experiments. Cai et al. (2017) 

demonstrated that with variable deadline-based workflow applications using cloud resources it can be 

difficult to meet the deadline constraint. Thai et al. (2018) noted that in a survey of requirements for large 

scale computing applications that include simulation experimentation (parameter sweeps) that the ability to 

set deadlines and minimize the cost of cloud resources is a popular requirement. Earlier work showed the 

feasibility of deadline-based autoscaling but with limited implementations (Mao et al. 2010; Vecchiola et 

al. 2012). 

 We now present three examples of innovative cloud-based simulation experimentation approaches. 

 

3 CLOUD-BASED SIMULATION EXPERIMENTATION: THE CLOUDSME PLATFORM 

APPROACH 

The architecture of the CloudSME Simulation Platform (CSSP) is shown in Figure 1. The goal of 

developing the platform was to support relatively quick deployment of cloud-based simulation applications 

and applications supporting high speed simulation experimentation that could easily switch between clouds 

and had several development options. The CSSP integrated three components: the WS-PGRADE/gUSE 

gateway framework (Balasko et al. 2013) and the CloudBroker Platform (Farkas et al. 2014) and the 

CloudSME AppCenter (cloudsme.eu/appcenter). The major objective of the CSSP is to ease developers’ 

efforts when cloud-enabling existing simulation software and to speed up significantly the “cloudification” 

process for commercial applications. The CSSP consists of three layers: 

• Simulation Applications Layer that allows software vendors deploying and presenting simulation 

products to end-users as Software as a Service (SaaS) in a wide range of scenarios and deployment 

models. 

• Cloud Platform Layer that provides access to multiple heterogeneous cloud resources and supports 

the creation of complex application workflows - a Platform as a Service (PaaS) to create and 

execute cloud-based simulations. 

• Cloud Resources Layer that represents the Infrastructure as a Service (IaaS) clouds connected to 

the platform. 

 The Simulation Applications Layer consists of the CloudSME AppCenter. This is a web-based frontend 

that enables software products and services to be offered by software vendors and service providers via a 

single interface. It offers billing functionality that includes price setting, payment integration and tracking 

of users’ spending. Three main deployment models are supported: Directly Deployed Applications (used 

via the AppCenter), Web-based Applications (used via a Web Portal or Science Gateway) and Desktop 

Applications (download and install). To support this, the CSSP offers a diverse set of APIs to support 

developers that link directly to the other components of the platform (via REST APIs, for example).  

 The Cloud Platform Layer consists of the cloud-based services from the CloudBroker Platform and the 

science gateway framework WS-PGRADE/gUSE. The CloudBroker Platform is a commercial PaaS that 

supports the management and execution of software on different cloud provider resources. CloudBroker 

uses IaaS clouds from resource providers and incorporates adapters both to public and private cloud 

infrastructures. The platform provides access to a wide range of resources including open source (e.g. 

OpenStack and OpenNebula) and proprietary (e.g. Amazon and CloudSigma) clouds, and also various HPC 

resources. Applications are deployed to CloudBroker. CloudBroker supports non-interactive serial and 

parallel batch processing applications on both Linux and Windows operating systems. The platform itself 

consists of a set of modules that manage processes, applications, users, finance (accounting, billing and 
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payment), and runtime issues (process monitoring, queuing, resources, storage and images). A scalability 

and fault handler layer supervises scalability requirements and failure issues. Cloud Provider Access 

Management oversees the connection to each Cloud technology and can control the number of virtual 

machines (VMs) started for a given application on a given cloud. gUSE (Grid and Cloud User Support 

Environment) is an open source scientific gateway framework providing users with easy access to cloud 

and grid infrastructures. gUSE provides with WS-PGRADE, a Liferay based portal to create and execute 

scientific workflows in various distributed computing infrastructures (DCIs) including clusters, grids and 

clouds. This enables the use of workflows on the CSSP. A specific workflow component enables parameter 

sweeps to be defined (that implement simulation experimentation). In more recent versions of the CSSP a 

simpler alternative to the workflow environment has been created that supports this function. A full 

description of WS-PGRADE/gUSE gateway framework is available in Kacsuk et al. (2012).  

The Cloud Resources Layer that consists of a range of clouds and HPC resources accessible via the 

CloudBroker Platform. 

Many cloud-based simulation applications have been developed using the CSSP - see 

http://cloudsme.eu and (Taylor et al. 2018) for examples.  

4 CLOUD AUTOSCALING FOR SIMULATION EXPERIMENTATION: THE MICADO 

APPROACH 

The previous section describe an architecture that supports the rapid deployment of commercial cloud-

based simulation applications. These have the facilities that allow vendors or users to specify which cloud 

to use and how many of which cloud resource/instance type. This fixed use of cloud resources is effective 

but, as experience has shown in simulation experimentation, not all cloud resources will be used all the time 

(due to overestimating the amount of work, queuing and scheduling of jobs on and off the cloud, etc.) to 

Figure 1: The CloudSME Simulation Platform. 

http://cloudsme.eu/
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see if we could develop a better approach we investigated how autoscaling approaches could be applied to 

cloud. 

 Typically, autoscaling of cloud resources is based on some performance-related metrics such as CPU, 

memory and/or bandwidth usage. However, in simulation experimentation a more appropriate metric is 

time. This would enable a deadline to be set and cloud resources scaled up/down as experiments are carried 

out in an attempt to meet the deadline (with appropriate restrictions on cost). The Microservice-based Cloud 

Application-level Dynamic Orchestrator (MiCADO) framework was developed to support autoscaling and 

the optimal and secure deployment and runtime orchestration of cloud applications (https://micado-

scale.eu/) (Kiss et al. 2019a). MiCADO has been extended to support deadline-based simulation 

experimentation (Anagnostou et al. 2019; Kiss et al. 2019b). An outline of MiCADO is given below. 

 As shown in Figure 2, MiCADO’s architecture is organized in layers using microservices. The layers 

are: 

• Application layer: the application (simulation) code with an application description template that 

defines the application requirements in terms of infrastructure, security and connectivity.  

• Orchestration layer: this has a Coordination interface API and a Cloud interface API and is 

responsible for overall scaling. 

• Microservices discovery and execution sublayer: starting and stopping microservices execution and 

keeping reachability information at runtime such as IP address and port number.  

• Microservices coordination logic sublayer: operations of running infrastructure such as starting and 

stopping instances and microservices migration.  

• Security, privacy and trust services vertical layer: security management across the Orchestration 

layer - security services are defined in the Application layer. 

• Cloud interface layer: support access to cloud resources (different cloud middleware APIs for direct 

access to cloud resources/interface with Platform as a Service (PaaS) APIs so as additional services, 

such as billing and account management, can be provided. 

• Cloud instance layer: actual cloud instances provided by Infrastructure as a Service (IaaS) providers 

and can be private or public infrastructures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: MiCADO Architecture. 
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Figure 3: MiCADO for Simulation Experimentation 

Figure 3 shows the version of MiCADO developed for autoscaling cloud-based simulation experimentation. 

All components are implemented using open source tools as indicated. The figure shows the MiCADO core 

and the deadline-based simulation experimentation application specific components. Functions denoted 

with clear boxes belong to MiCADO core, while the ones in grey boxes are extensions required to support 

simulation experimentation. 

 MiCADO consists of a MiCADO Master node and MiCADO Worker nodes. Inside the MiCADO 

Master node the Submitter receives the Application Description Template (ADT, e.g. a TOSCA 

specification (TOSCA 2016)) that includes a description of the application, the container and virtual 

machine topology, and the policy description (in case of simulation experimentation the parameters related 

to the deadline by which the experiment needs to be completed). The Cloud Orchestrator allocates and 

releases virtual machines by communicating with the cloud APIs and starting/stopping Worker nodes. The 

Container Orchestrator scales at the container level and allocates applications to containers in the Worker 

nodes, track their execution and destroys them when needed. The Monitoring System collects information 

on resources utilization from the Worker nodes and creates alerts if appropriate. The Policy Keeper 

implements the application policies and makes decisions to start/stop cloud resources and to schedule 

containers on Worker nodes. It also keeps the Cloud and Container Orchestrators synchronized. The 

Optimizer always runs in the background and performs optimization calculations on demand; it informs 

Policy Keeper on the optimized setup of cloud resources and container infrastructure. MiCADO Worker 

Nodes contain the Container/node monitor that is responsible for measuring the load of the resources and 

the resource usage of the container services. The measured attributes are then given to the Monitoring 

System running on the Master Node. The Container Executor starts, executes and destroys containers upon 

request from the Container Orchestrator. Container components realise the user services defined in the 

(container) infrastructure description submitted through the MiCADO Submitter on the Master Node. In 

the case of simulation experimentation there is also a specific component running in the containers, the Job 

Queue Manager Agent that communicates with the external Simulation Experimentation services (left hand 

side of Figure 3). 

The components supporting simulation experimentation are external to MiCADO. The Job Queue 

Manager is responsible for communicating with MiCADO and generating and passing on the Application 

Description Template (ADT). This description includes the simulation application to be executed and the 

necessary parameters to enforce deadline-based scaling (e.g. the deadline, the estimated time for one 
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simulation run, URLs for simulation executables, the maximum number of virtual machines/containers that 

can be deployed, etc.) The Simulation Experiment Manager, that typically also includes the user interface, 

is responsible for uploading experiment details (e.g. simulation model, input data, etc.) to the Simulation 

Experiments Repository, downloading the results from the repository and sending the experiment 

description (provided by the user for example in JSON format) to the Job Queue Manager. The Simulation 

Experiments Repository keeps all experiments data and files (or URLs to data and files).   

MiCADO is being adopted by several scientific user communities and commercial companies, for 

example by Saker Solutions, in the development of a cloud-based extension to their simulation experiment 

SakerGrid. This is presented in the next section. 

5 CLOUD-BASED AUTOSCALING IN THE SAKERGRID SIMULATION 

EXPERIMENTATION ENVIRONMENT 

Saker Solutions Ltd is an independent supplier of simulation solutions from the United Kingdom that 

underpins its simulation offers with the provision of innovative technologies which support users to gain 

the most from simulation projects. They have produced the SakerGrid Platform, an enterprise desktop grid 

that significantly reduces simulation experimentation time by using available enterprise computing 

resources (Kite et al. 2011). The capacity of SakerGrid is restricted by the number of available desktop grid 

workers at any time and adopting the on-demand computational resources of a cloud, especially combined 

with efficient use through autoscaling, is very attractive. The following presents how MiCADO has been 

integrated with SakerGrid.  
The new SakerGrid-MiCADO architecture is shown in Figure 4. This integration shows changes made 

in both architectures, particularly in terms of the Worker nodes and the delivery of several dynamically 

changing parameters to MiCADO for the deadline-based scaling policy. Changes were needed to associate 

a Worker Service to a given simulation experiment, i.e. when worker nodes are created MiCADO must 

ensure sure that the new Worker Service does not process runs belonging to another experiment. The 

Worker node now takes the (SakerGrid) experiment ID and the Worker Service instructs the Manager 

Service to send jobs belonging only to the given experiment. This modification was needed as Saker runs 

multiple experiments from multiple projects.  

The SakerGrid Manager Service was also modified to give the necessary information to MiCADO for 

deadline-based scaling of jobs. This involved extending the Manager Service to make some parts of its 

internal database visible (see DB in Figure 4). An SQL table is created and maintained by the Manager 

Service to provide information to MiCADO so that it has information on the number of running and waiting 

run, the average execution time of a run, the deadline of the experiment, and the current number of idle and 

busy workers. These are continuously monitored by a Prometheus SQL exporter (see SQL exporter in 

Figure 4). 

At the time of development, the implementation of the MiCADO Master component supported the 

deployment, execution and scaling of only one application at a time. To support parallel execution of 

multiple experiments/projects from the SakerGrid platform, a dedicated MiCADO instance is needed to be 

deployed for the lifetime of every experiment. A new MiCADO launcher component was designed and 

implemented that instantiates a new MiCADO master whenever the SakerGrid Manager Service requires. 

When a user creates a new experiment through the SakerGrid Client Service, the SakerGrid Manager 

invokes a REST call from MiCADO Launcher component interface and passes the experiment ID to be 

delivered to the Worker nodes. The Launcher then instantiates the MiCADO master, generates the TOSCA-

based application template by inserting the experiment ID and submits this to the newly created MiCADO 

Master instance. The TOSCA template contains blocks to describe the components to be deployed and the 

related scaling policy. The template is finalised by the Launcher component by adding experiment ID for 

the Worker nodes. The ID is also used in monitoring to ensure the correct experiment-related information 

is used.  
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 Once the MiCADO Master for an experiment has been created, and the launcher has generated and 

submitted the TOSCA template, the deployment is performed automatically and the scaling activity is 

started by the MiCADO Master. The Submitter generates the necessary descriptors for Policy Keeper and 

Occopus. The Occopus descriptor contains the experiment ID for the Worker VMs in order to specify the 

associated experiment. The Policy Keeper descriptor includes the scaling policy and the specific 

Prometheus queries for the current experiment. With these descriptors, the Submitter initiates the Worker 

VM creation through Occopus with the initial number of VMs. Next, each newly created Worker VM starts 

the Worker Service which joins to the Manager Service and executes the simulation application (in this 

case FlexSim™, to process simulation runs belonging to the experiment. Finally, Prometheus starts 

monitoring by collecting periodically the necessary parameters and delivering them to the Policy Keeper 

that makes the necessary decisions on the number of required Worker nodes. 

In MiCADO the Policy Keeper component executes executing the scaling algorithm periodically which 

returns the number of Worker VMs to be kept for the experiment. The algorithm takes the following metrics 

as input: remaining time until deadline, estimated running time of one replication, number of runs (jobs) 

which has not yet started, number of runs being processed and number of idle workers. These variables are 

periodically queried from Prometheus and used by the scaling algorithm during execution. The scaling 

policy checks the deadline formula and up/down scales the Worker VMs. When the execution of the 

experiment finished (i.e. all replications successfully completed), the SakerGrid manager may instruct the 

MiCADO launcher to shut down the MiCADO Master belonging to the given experiment to release all 

resources associated with the experiment. Otherwise it is possible to generate new replications in this 

experiment, override the deadline and start new Worker nodes to process replications again.  

6 DISCUSSION 

The previous sections have presented three innovations in cloud-based simulation experimentation. 

Experiences with the CloudSME Simulation Platform have shown that it is feasible to create innovate 

cloud-based simulation applications. The AppCenter, or at least some kind of monitoring, billing and 

payment functionality, is needed for commercial applications as there needs to be some way for a user to 

paying. The workflow functionality can be complex for some developers and given that for most simulation 

experimentation applications only the parameter sweep function was used this is often replaced with the 
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new cloud-based simulation application having a dedicated job launch. Experiences with MiCADO have 

led to some innovative non-simulation cloud-based applications that, for example, automatically provision 

new web services for web hosting/management applications. The porting of MiCADO to Saker Solution’s 

SakerGrid continues and forms part of the on-going development of cloud-based applications and 

infrastructure at the company. This approach is also being currently integrated with the original CloudSME 

Simulation Platform. 

  These innovative approaches has enabled the development of several cloud-based simulation 

experimentation applications. However, one of our goals is to make Cloud Computing as accessible as 

possible to simulation users. Anecdotally, from our experience, we can identify four kinds of people in the 

simulation community that we have discussed this problem with over the years. These were (very 

informally!) the “super geeks”, the “geeks”, the “outsiders” and the “potentials”. The super geeks are highly 

technically (computing) aware expert simulation users who could both develop their own cloud-based 

simulation applications and use them for fast, methodologically correct simulation experimentation (e.g. 

members of the Parallel and Distributed Simulation community, technical developers working at simulation 

vendors, etc.). The geeks are technically aware expert simulation users who were attempting to build cloud-

based simulation applications but did not have the technical capability to take advantage of contemporary 

technical approaches. The outsiders are those who did have the technical capability but did not really 

understand critical issues of simulation methodology. The potentials are those that regularly build models 

and correctly perform simulation experimentation and either always or sometimes see experimentation time 

as a major issue in their work. It has been rare to meet simulation users that never see experimentation time 

as a challenge. 

 Our “potentials”, typically have considerable simulation expertise and (quite rightly) little technical 

(computing) knowledge and use the “computer” as a tool. They have no desire or motivation to become 

geeks and cloud-based solutions need to account for this. Some simulation vendors have developed cloud 

running functionality in their software but this tends to be hidden and cloud costs appears to be covered 

(and limited) by annual license agreements or specifically negotiated contracts. Cloud requires payment 

and, despite individual cloud resources being extremely cheap, continued cloud use can become expense 

(especially data transfer in and out of the cloud). Arguably users also need to be exposed to choice – the 

cloud market is no longer just supported by the likes of Amazon, Microsoft, etc. A new and competitive 

cloud market is developing and cost/quality of service varies across these clouds (what might be the best 

deal today from one cloud provider might be bettered tomorrow by another). This gives us two perspectives: 

we want the solution to be as simple as possible and we want to give users choice.  

To address these we created a web-based portal that enables users to run simulation experiments on 

cloud with two open source simulation software: JaamSim (JaamSim Development Team 2016) (discrete-

event simulation) and REPAST (North et al. 2013) (agent-based simulation). These were selected so that 

we had one exemplar from each simulation community, they can be run on linux cloud instances (Microsoft 

Windows is possible but at extra cost as it is not an open source operating system), and (bring open source) 

there is no license cost for running multiple simulation in parallel. The portal uses the CloudBroker element 

of the CloudSME Simulation Platform for billing and payment. In Cloud Computing there is a need for 

some online fileserver that holds the models, software, experiment parameters that a cloud-based simulation 

experimentation application would access to send each experiment run/job (consisting of the model, the 

simulation software and the parameters) to a cloud instance. The results from each run would also be sent 

back to the fileserver. Many of our “potentials” do not know how to setup a web-based fileserver or work 

at a company or University that can set one up without financial justification (essentially another barrier to 

cloud use). We decided that we would use the Dropbox API as a fileserver – users store their files on a 

Dropbox account and our system accesses it as it if was a fileserver (other web-based file stores are 

available). To use our new CloudSME Portal, users add credit to their CloudBroker account, logon onto the 

Portal (the CloudBroker account is linked), add their Dropbox credentials (to allow the Portal to access 

their Dropbox account), upload their JaamSim or REPAST models/parameters to a specified Dropbox 
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directory, choose a cloud/cloud instance type and number of instances (costs are shown – currently we help 

users to understand the cost/performance implications), and press “run”. Users monitor their Dropbox 

account to see results returning and to see when their experiment is complete. Our CloudSME Portal is in 

beta testing and we welcome volunteers to test our system (hosted by CloudSME UG). Overall, 

performance is similar to performances reported in the testing of the CloudSME Simulation Platform 

(Taylor et al. 2018). We will integrated autoscaling into our Portal at a later date. 

7 CONCLUSIONS 

 

The main problem addressed in this paper is how to overcome limitations of experimentation time in 

simulation by using one or more cloud-based innovations presented in this paper. The literature cited in the 

paper gives examples of use and performance of the different systems. Overall, the potential impact of these 

and other similar cloud-based innovations is widespread as simulation users discover that high speed 

experimentation is possible and so making time savings in projects or enabling wider exploration of 

problems. Indeed an interesting area of research is how these extra, but not unlimited, parallel 

computational resources can introduce new forms of optimization into simulation. Overall, one might 

observe that these innovations might make a significant impact in the use of simulation for innovation.  
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