15 research outputs found

    Relative qPCR to quantify colonization of plant roots by arbuscular mycorrhizal fungi

    Get PDF
    Arbuscular mycorrhiza fungi (AMF) are beneficial soil fungi that can promote the growth of their host plants. Accurate quantification of AMF in plant roots is important because the level of colonization is often indicative of the activity of these fungi. Root colonization is traditionally measured with microscopy methods which visualize fungal structures inside roots. Microscopy methods are labor-intensive, and results depend on the observer. In this study, we present a relative qPCR method to quantify AMF in which we normalized the AMF qPCR signal relative to a plant gene. First, we validated the primer pair AMG1F and AM1 in silico, and we show that these primers cover most AMF species present in plant roots without amplifying host DNA. Next, we compared the relative qPCR method with traditional microscopy based on a greenhouse experiment with Petunia plants that ranged from very high to very low levels of AMF root colonization. Finally, by sequencing the qPCR amplicons with MiSeq, we experimentally confirmed that the primer pair excludes plant DNA while amplifying mostly AMF. Most importantly, our relative qPCR approach was capable of discriminating quantitative differences in AMF root colonization and it strongly correlated (Spearman Rho = 0.875) with quantifications by traditional microscopy. Finally, we provide a balanced discussion about the strengths and weaknesses of microscopy and qPCR methods. In conclusion, the tested approach of relative qPCR presents a reliable alternative method to quantify AMF root colonization that is less operator-dependent than traditional microscopy and offers scalability to high-throughput analyses

    Predicting soil fungal communities from chemical and physical properties

    Full text link
    Introduction: Biogeography describes spatial patterns of diversity and explains why organisms occur in given conditions. While it is well established that the diversity of soil microbes is largely controlled by edaphic environmental variables, microbiome community prediction from soil properties has received less attention. In this study, we specifically investigated whether it is possible to predict the composition of soil fungal communities based on physicochemical soil data using multivariate ordination. Materials and Methods: We sampled soil from 59 arable fields in Switzerland and assembled paired data of physicochemical soil properties as well as profiles of soil fungal communities. Fungal communities were characterized using long-read sequencing of the entire ribosomal internal transcribed spacer. We used redundancy analysis to combine the physical and chemical soil measurements with the fungal community data. Results: We identified a reduced set of 10 soil properties that explained fungal community composition. Soil properties with the strongest impact on the fungal community included pH, potassium and sand content. Finally, we evaluated the model for its suitability for prediction using leave-one-out validation. The prediction of community composition was successful for most soils, and only 3/59 soils could not be well predicted (Pearson correlation coefficients between observed and predicted communities of <0.5). Further, we successfully validated our prediction approach with a publicly available data set. With both data sets, prediction was less successful for soils characterized by very unique properties or diverging fungal communities, while it was successful for soils with similar characteristics and microbiome. Conclusions: Reliable prediction of microbial communities from chemical soil properties could bypass the complex and laborious sequencing-based generation of microbiota data, thereby making soil microbiome information available for agricultural purposes such as pathogen monitoring, field inoculation or yield projections

    Soil microbiome indicators can predict crop growth response to large-scale inoculation with arbuscular mycorrhizal fungi

    Full text link
    Alternative solutions to mineral fertilizers and pesticides that reduce the environmental impact of agriculture are urgently needed. Arbuscular mycorrhizal fungi (AMF) can enhance plant nutrient uptake and reduce plant stress; yet, large-scale field inoculation trials with AMF are missing, and so far, results remain unpredictable. We conducted on-farm experiments in 54 fields in Switzerland and quantified the effects on maize growth. Growth response to AMF inoculation was highly variable, ranging from -12% to +40%. With few soil parameters and mainly soil microbiome indicators, we could successfully predict 86% of the variation in plant growth response to inoculation. The abundance of pathogenic fungi, rather than nutrient availability, best predicted (33%) AMF inoculation success. Our results indicate that soil microbiome indicators offer a sustainable biotechnological perspective to predict inoculation success at the beginning of the growing season. This predictability increases the profitability of microbiome engineering as a tool for sustainable agricultural management

    Plant secondary metabolite-dependent plant-soil feedbacks can improve crop yield in the field.

    Get PDF
    Plant secondary metabolites that are released into the rhizosphere alter biotic and abiotic soil properties, which in turn affect the performance of other plants. How this type of plant-soil feedback affects agricultural productivity and food quality in the field in the context of crop rotations is unknown. Here, we assessed the performance, yield and food quality of three winter wheat varieties growing in field plots whose soils had been conditioned by either wild type or benzoxazinoid-deficient bx1 maize mutant plants. Following maize cultivation, we detected benzoxazinoid-dependent chemical and microbial fingerprints in the soil. The benzoxazinoid fingerprint was still visible during wheat growth, but the microbial fingerprint was no longer detected. Wheat emergence, tillering, growth, and biomass increased in wild type conditioned soils compared to bx1 mutant conditioned soils. Weed cover was similar between soil conditioning treatments, but insect herbivore abundance decreased in benzoxazinoid-conditioned soils. Wheat yield was increased by over 4% without a reduction in grain quality in benzoxazinoid-conditioned soils. This improvement was directly associated with increased germination and tillering. Taken together, our experiments provide evidence that soil conditioning by plant secondary metabolite producing plants can increase yield via plant-soil feedbacks under agronomically realistic conditions. If this phenomenon holds true across different soils and environments, optimizing root exudation chemistry could be a powerful, genetically tractable strategy to enhance crop yields without additional inputs

    Bacterial tolerance to host-exuded specialized metabolites structures the maize root microbiome.

    Get PDF
    Plants exude specialized metabolites from their roots, and these compounds are known to structure the root microbiome. However, the underlying mechanisms are poorly understood. We established a representative collection of maize root bacteria and tested their tolerance against benzoxazinoids (BXs), the dominant specialized and bioactive metabolites in the root exudates of maize plants. In vitro experiments revealed that BXs inhibited bacterial growth in a strain- and compound-dependent manner. Tolerance against these selective antimicrobial compounds depended on bacterial cell wall structure. Further, we found that native root bacteria isolated from maize tolerated the BXs better compared to nonhost Arabidopsis bacteria. This finding suggests the adaptation of the root bacteria to the specialized metabolites of their host plant. Bacterial tolerance to 6-methoxy-benzoxazolin-2-one (MBOA), the most abundant and selective antimicrobial metabolite in the maize rhizosphere, correlated significantly with the abundance of these bacteria on BX-exuding maize roots. Thus, strain-dependent tolerance to BXs largely explained the abundance pattern of bacteria on maize roots. Abundant bacteria generally tolerated MBOA, while low abundant root microbiome members were sensitive to this compound. Our findings reveal that tolerance to plant specialized metabolites is an important competence determinant for root colonization. We propose that bacterial tolerance to root-derived antimicrobial compounds is an underlying mechanism determining the structure of host-specific microbial communities

    Research into the function of RubisCO in green seeds

    No full text
    This work aims to test genetically a CO2 recycling pathway proposed to operate during the development of green seeds, including many that are agronomically important. RubisCO (ribulose 1,5 bisphosphate carboxylase/oxygenase) is famous for its role in CO2 assimilation as part of the Calvin-Benson cycle in leaves, which generates carbohydrates for export to the sink tissues. Energy-rich lipids, which are stored in many seeds, are derived from these transported carbohydrates. During the synthesis of fatty acids for lipid production, one molecule of CO2 is released for every two carbon atoms incorporated, representing significant carbon loss. Previous work on developing Brassica napus L. embryos proposed that RubisCO, working outside of the context of the Calvin cycle, could increase the efficiency of lipid synthesis by reincorporating CO2. This green seed specific bypass of RubisCO was supported by models and radioactive labelling experiments, but not tested genetically. I use mutants of Arabidopsis thaliana – a relative of B. napus L. that also has green, lipid-rich seeds – to reduce the flux through RubisCO in a seed-specific way. Interestingly, abolishing the RubisCO pathway by mutating PRK in seeds leads to a reduction in lipid content greater than predicted by the proposed recycling bypass. In addition to a major decrease of fatty acid production, the mutation of PRK causes some major impairments in the photosynthesis apparatus and a reallocation of carbon into starch

    Relative qPCR to quantify colonization of plant roots by arbuscular mycorrhizal fungi

    Get PDF
    Arbuscular mycorrhiza fungi (AMF) are beneficial soil fungi that can promote the growth of their host plants. Accurate quantification of AMF in plant roots is important because the level of colonization is often indicative of the activity of these fungi. Root colonization is traditionally measured with microscopy methods which visualize fungal structures inside roots. Microscopy methods are labor-intensive, and results depend on the observer. In this study, we present a relative qPCR method to quantify AMF in which we normalized the AMF qPCR signal relative to a plant gene. First, we validated the primer pair AMG1F and AM1 in silico, and we show that these primers cover most AMF species present in plant roots without amplifying host DNA. Next, we compared the relative qPCR method with traditional microscopy based on a greenhouse experiment with Petunia plants that ranged from very high to very low levels of AMF root colonization. Finally, by sequencing the qPCR amplicons with MiSeq, we experimentally confirmed that the primer pair excludes plant DNA while amplifying mostly AMF. Most importantly, our relative qPCR approach was capable of discriminating quantitative differences in AMF root colonization and it strongly correlated (Spearman Rho = 0.875) with quantifications by traditional microscopy. Finally, we provide a balanced discussion about the strengths and weaknesses of microscopy and qPCR methods. In conclusion, the tested approach of relative qPCR presents a reliable alternative method to quantify AMF root colonization that is less operator-dependent than traditional microscopy and offers scalability to high-throughput analyses

    Relative qPCR to quantify colonization of plant roots by arbuscular mycorrhizal fungi

    Get PDF
    Arbuscular mycorrhiza fungi (AMF) are beneficial soil fungi that can promote the growth of their host plants. Accurate quantification of AMF in plant roots is important because the level of colonization is often indicative of the activity of these fungi. Root colonization is traditionally measured with microscopy methods which visualize fungal structures inside roots. Microscopy methods are labor-intensive, and results depend on the observer. In this study, we present a relative qPCR method to quantify AMF in which we normalized the AMF qPCR signal relative to a plant gene. First, we validated the primer pair AMG1F and AM1 in silico, and we show that these primers cover most AMF species present in plant roots without amplifying host DNA. Next, we compared the relative qPCR method with traditional microscopy based on a greenhouse experiment with Petunia plants that ranged from very high to very low levels of AMF root colonization. Finally, by sequencing the qPCR amplicons with MiSeq, we experimentally confirmed that the primer pair excludes plant DNA while amplifying mostly AMF. Most importantly, our relative qPCR approach was capable of discriminating quantitative differences in AMF root colonization and it strongly correlated (Spearman Rho = 0.875) with quantifications by traditional microscopy. Finally, we provide a balanced discussion about the strengths and weaknesses of microscopy and qPCR methods. In conclusion, the tested approach of relative qPCR presents a reliable alternative method to quantify AMF root colonization that is less operator-dependent than traditional microscopy and offers scalability to high-throughput analyses

    Root-exuded specialized metabolites reduce arsenic toxicity in maize.

    Get PDF
    By releasing specialized metabolites, plants modify their environment. Whether and how specialized metabolites protect plants against toxic levels of trace elements is not well understood. We evaluated whether benzoxazinoids, which are released into the soil by major cereals, can confer protection against arsenic toxicity. Benzoxazinoid-producing maize plants performed better in arsenic-contaminated soils than benzoxazinoid-deficient mutants in the greenhouse and the field. Adding benzoxazinoids to the soil restored the protective effect, and the effect persisted to the next crop generation via positive plant-soil feedback. Arsenate levels in the soil and total arsenic levels in the roots were lower in the presence of benzoxazinoids. Thus, the protective effect of benzoxazinoids is likely soil-mediated and includes changes in soil arsenic speciation and root accumulation. We conclude that exuded specialized metabolites can enhance protection against toxic trace elements via soil-mediated processes and may thereby stabilize crop productivity in polluted agroecosystems
    corecore