290 research outputs found

    Pulvinar-Cortex Interactions in Vision and Attention

    Get PDF
    The ventro-lateral pulvinar is reciprocally connected with the visual areas of the ventral stream that are important for object recognition. To understand the mechanisms of attentive stimulus processing in this pulvinar-cortex loop, we investigated the interactions between the pulvinar, area V4, and IT cortex in a spatial-attention task. Sensory processing and the influence of attention in the pulvinar appeared to reflect its cortical inputs. However, pulvinar deactivation led to a reduction of attentional effects on firing rates and gamma synchrony in V4, a reduction of sensory-evoked responses and overall gamma coherence within V4, and severe behavioral deficits in the affected portion of the visual field. Conversely, pulvinar deactivation caused an increase in low-frequency cortical oscillations, often associated with inattention or sleep. Thus, cortical interactions with the ventro-lateral pulvinar are necessary for normal attention and sensory processing and for maintaining the cortex in an active state. The pulvinar is often proposed to modulate cortical processing with attention. Zhou et al. find that beyond any role in attention, the pulvinar input to cortex seems necessary to maintain the cortex in an active state.National Institutes of Health (U.S.) (Grant R01 EY017292

    Effect of distracting faces on visual selective attention in the monkey

    Get PDF
    In primates, visual stimuli with social and emotional content tend to attract attention. Attention might be captured through rapid, automatic, subcortical processing or guided by slower, more voluntary cortical processing. Here we examined whether irrelevant faces with varied emotional expressions interfere with a covert attention task in macaque monkeys. In the task, the monkeys monitored a target grating in the periphery for a subtle color change while ignoring distracters that included faces appearing elsewhere on the screen. The onset time of distracter faces before the target change, as well as their spatial proximity to the target, was varied from trial to trial. The presence of faces, especially faces with emotional expressions interfered with the task, indicating a competition for attentional resources between the task and the face stimuli. However, this interference was significant only when faces were presented for greater than 200 ms. Emotional faces also affected saccade velocity and reduced pupillary reflex. Our results indicate that the attraction of attention by emotional faces in the monkey takes a considerable amount of processing time, possibly involving cortical–subcortical interactions. Intranasal application of the hormone oxytocin ameliorated the interfering effects of faces. Together these results provide evidence for slow modulation of attention by emotional distracters, which likely involves oxytocinergic brain circuits.Simons FoundationNational Institutes of Health (U.S.) (Grant EY017292

    Cell-Type-Specific Synchronization of Neural Activity in FEF with V4 during Attention

    Get PDF
    SummaryShifts of gaze and shifts of attention are closely linked and it is debated whether they result from the same neural mechanisms. Both processes involve the frontal eye fields (FEF), an area which is also a source of top-down feedback to area V4 during covert attention. To test the relative contributions of oculomotor and attention-related FEF signals to such feedback, we recorded simultaneously from both areas in a covert attention task and in a saccade task. In the attention task, only visual and visuomovement FEF neurons showed enhanced responses, whereas movement cells were unchanged. Importantly, visual, but not movement or visuomovement cells, showed enhanced gamma frequency synchronization with activity in V4 during attention. Within FEF, beta synchronization was increased for movement cells during attention but was suppressed in the saccade task. These findings support the idea that the attentional modulation of visual processing is not mediated by movement neurons

    The Effect of Learning on the Function of Monkey Extrastriate Visual Cortex

    Get PDF
    One of the most remarkable capabilities of the adult brain is its ability to learn and continuously adapt to an ever-changing environment. While many studies have documented how learning improves the perception and identification of visual stimuli, relatively little is known about how it modifies the underlying neural mechanisms. We trained monkeys to identify natural images that were degraded by interpolation with visual noise. We found that learning led to an improvement in monkeys' ability to identify these indeterminate visual stimuli. We link this behavioral improvement to a learning-dependent increase in the amount of information communicated by V4 neurons. This increase was mediated by a specific enhancement in neural activity. Our results reveal a mechanism by which learning increases the amount of information that V4 neurons are able to extract from the visual environment. This suggests that V4 plays a key role in resolving indeterminate visual inputs by coordinated interaction between bottom-up and top-down processing streams

    Large Volume, Behaviorally-relevant Illumination for Optogenetics in Non-human Primates

    Get PDF
    This protocol describes a large-volume illuminator, which was developed for optogenetic manipulations in the non-human primate brain. The illuminator is a modified plastic optical fiber with etched tip, such that the light emitting surface area is > 100x that of a conventional fiber. In addition to describing the construction of the large-volume illuminator, this protocol details the quality-control calibration used to ensure even light distribution. Further, this protocol describes techniques for inserting and removing the large volume illuminator. Both superficial and deep structures may be illuminated. This large volume illuminator does not need to be physically coupled to an electrode, and because the illuminator is made of plastic, not glass, it will simply bend in circumstances when traditional optical fibers would shatter. Because this illuminator delivers light over behaviorally-relevant tissue volumes (≈ 10 mm 3 ) with no greater penetration damage than a conventional optical fiber, it facilitates behavioral studies using optogenetics in non-human primates.National Institutes of Health (U.S.) (Grant NIH 2R44NS070453-03A1)National Institutes of Health (U.S.) (Grant NIH EY017292

    High-Frequency, Long-Range Coupling Between Prefrontal and Visual Cortex During Attention

    Get PDF
    Electrical recordings in humans and monkeys show attentional enhancement of evoked responses and gamma synchrony in ventral stream cortical areas. Does this synchrony result from intrinsic activity in visual cortex or from inputs from other structures? Using paired recordings in the frontal eye field (FEF) and area V4, we found that attention to a stimulus in their joint receptive field leads to enhanced oscillatory coupling between the two areas, particularly at gamma frequencies. This coupling appeared to be initiated by FEF and was time-shifted by about 8 to 13 milliseconds across a range of frequencies. Considering the expected conduction and synaptic delays between the areas, this time-shifted coupling at gamma frequencies may optimize the postsynaptic impact of spikes from one area upon the other, improving cross-area communication with attention.Grant EY017292Grant EY1792

    A Source for Feature-Based Attention in the Prefrontal Cortex

    Get PDF
    In cluttered scenes, we can use feature-based attention to quickly locate a target object. To understand how feature attention is used to find and select objects for action, we focused on the ventral prearcuate (VPA) region of prefrontal cortex. In a visual search task, VPA cells responded selectively to search cues, maintained their feature selectivity throughout the delay and subsequent saccades, and discriminated the search target in their receptive fields with a time course earlier than in FEF or IT cortex. Inactivation of VPA impaired the animals' ability to find targets, and simultaneous recordings in FEF revealed that the effects of feature attention were eliminated while leaving the effects of spatial attention in FEF intact. Altogether, the results suggest that VPA neurons compute the locations of objects with the features sought and send this information to FEF to guide eye movements to those relevant stimuli.National Eye Institute (Grant EY017921)National Science Foundation (U.S.) (Grant CCF 1317348

    FEF inactivation with improved optogenetic methods

    Get PDF
    Optogenetic methods have been highly effective for suppressing neural activity and modulating behavior in rodents, but effects have been much smaller in primates, which have much larger brains. Here, we present a suite of technologies to use optogenetics effectively in primates and apply these tools to a classic question in oculomotor control. First, we measured light absorption and heat propagation in vivo, optimized the conditions for using the red-light–shifted halorhodopsin Jaws in primates, and developed a large-volume illuminator to maximize light delivery with minimal heating and tissue displacement. Together, these advances allowed for nearly universal neuronal inactivation across more than 10 mm³ of the cortex. Using these tools, we demonstrated large behavioral changes (i.e., up to several fold increases in error rate) with relatively low light power densities (≤100 mW/mm²) in the frontal eye field (FEF). Pharmacological inactivation studies have shown that the FEF is critical for executing saccades to remembered locations. FEF neurons increase their firing rate during the three epochs of the memory-guided saccade task: visual stimulus presentation, the delay interval, and motor preparation. It is unclear from earlier work, however, whether FEF activity during each epoch is necessary for memory-guided saccade execution. By harnessing the temporal specificity of optogenetics, we found that FEF contributes to memory-guided eye movements during every epoch of the memory-guided saccade task (the visual, delay, and motor periods).United States. National Institutes of Health (2R44NS070453-03A1)United States. National Institutes of Health (EY017292
    • …
    corecore