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SUMMARY

In cluttered scenes, we can use feature-based attention to quickly locate a target object. To 

understand how feature attention is used to find and select objects for action, we focused on the 

ventral pre-arcuate (VPA) region of prefrontal cortex. In a visual search task, VPA cells responded 

selectively to search cues, maintained their feature selectivity throughout the delay and subsequent 

saccades, and discriminated the search target in their receptive fields with a timecourse earlier than 

in FEF or IT cortex. Inactivation of VPA impaired the animals’ ability to find targets, and 

simultaneous recordings in FEF revealed that the effects of feature attention were eliminated while 

leaving the effects of spatial attention in FEF intact. Altogether, the results suggest that VPA 

neurons compute the locations of objects with the features sought and send this information to 

FEF to guide eye movements to those relevant stimuli.

INTRODUCTION

In scanning a complex scene, we often know what we are looking for, but not necessarily 

where it is. The ability to quickly find an object based on a memory of its features is 

normally attributed to feature-based attention, which shares some properties with memory 

recall and visual imagery. For simplicity, we will not distinguish here between attention to 

features of an object versus attention to objects as configurations of multiple non-spatial 

features. The memory of the searched-for object has been described as the “attentional 

template” for search (Desimone and Duncan, 1995; Duncan and Humphreys, 1989; Wolfe et 

al., 1989). FEF, area LIP, and the superior colliculus have all been described as containing 

“priority maps”, in which responses to a stimulus in a given location in the retinotopic map 

are scaled according to the similarity of the stimulus to the searched-for target feature 

(Basso and Wurtz, 1998; Kusunoki et al., 2000; Thompson and Bichot, 2005). For example, 

if a monkey is searching for a yellow banana in a scene, the locations of all yellow stimuli in 

the priority maps might be signaled by enhanced neural activity. Cells in those areas respond 
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as though they have received information about the similarity between the stimulus features 

in their receptive fields (RFs), and the features of the searched-for target, ultimately 

resulting in the selection of a single stimulus for a saccade target or further visual processing 

(Findlay and Walker, 1999; Hamker, 2005; Itti and Koch, 2001; Olshausen et al., 1993; 

Wolfe et al., 1989). However, cells in those structures show little or no selectivity for 

features such as yellow or activity related to the memory of these features. Thus, it seems 

unlikely that these areas compute the similarity between the features of the attentional 

template and the features of a stimulus. How is the match between the feature at a given 

location and those of the search object computed?

One possibility is that the match is computed in early visual areas, such as V4, where the 

responses of cells are feature selective and are also influenced by feature attention, i.e. the 

features of the target the animal is searching for (Chelazzi et al., 2001; Hayden and Gallant, 

2005; Martinez-Trujillo and Treue, 2004; McAdams and Maunsell, 2000; Motter, 1994). In 

particular, we have previously shown that, during free-viewing visual search, the responses 

of V4 neurons are maximally enhanced when there is a preferred feature in their RF, and 

that feature matches some or all of the target features, independently of the locus of spatial 

attention (Bichot et al., 2005; Zhou and Desimone, 2011), as predicted by parallel search 

models (Desimone and Duncan, 1995; Wolfe et al., 1989).

However, recent studies with paired recordings in FEF and V4 have shown that the onset of 

feature-based selection in a free-viewing visual search task (Zhou and Desimone, 2011) 

occurs earlier in FEF than in V4, and the same relative timing difference has been found in a 

color-cueing spatial attention task (Gregoriou et al., 2009). If the effects of feature and 

spatial attention occur later in V4 than in FEF, it seems very unlikely that V4 is the source of 

the selection signals observed in FEF.

Instead, parts of prefrontal cortex (PFC) outside of FEF seem more likely to be a major 

source of computations for feature-based object selection. PFC has traditionally been 

associated with executive control (for review, see (Miller and Cohen, 2001)), and working 

memory for locations and objects (Everling et al., 2006; Funahashi et al., 1989; Fuster and 

Alexander, 1971; Mendoza-Halliday et al., 2014; Miller et al., 1996; Rainer et al., 1998; Rao 

et al., 1997). Human imaging studies show that parts of PFC are active during both spatial 

and feature attention (Bressler et al., 2008; Egner et al., 2008; Gazzaley and Nobre, 2012; 

Giesbrecht et al., 2003), and a recent human MEG and fMRI study has reported that a 

particular region in PFC, the inferior frontal junction (IFJ), played an important role in the 

top-down control of feature-based attention (Baldauf and Desimone, 2014).

In the monkey, we focused on the portion of ventral PFC that extends forward from FEF 

onto the pre-arcuate gyrus and ventral bank of the principal sulcus. This regions has 

interconnections with IT, TEO, and possibly V4, on the one hand, and connections with FEF 

and other parts of PFC on the other (Barbas and Pandya, 1989; Webster et al., 1994). A 

monkey imaging study has shown that this region, along with FEF and a posterior portion of 

area 46, is differentially activated during search for a salient target (Wardak et al., 2010). 

Because the physiological properties of the cells in the ventral bank of the principal sulcus 

(which we will term “VPS”) and cells on the ventral pre-arcuate gyrus (which we will term 
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“VPA”) appeared to be somewhat different, we have presented the results from the two 

subregions of PFC separately, using strictly anatomical designations.

We also recorded from the central portion of the inferior temporal (IT) cortex, which plays 

an important role in object recognition (for review, see (DiCarlo et al., 2012)) to test the 

alternative possibility that a stage of visual processing later than V4 is the source of feature-

based attention, consistent with known feedback of attentional modulation from higher-order 

to lower-order visual areas (Buffalo et al., 2010). The distinctive properties of cells in VPA 

and the effects of VPA deactivation on behavior and FEF responses suggest that this region 

could be the equivalent of the IFJ in humans and thereby play a key role in feature based 

attention.

RESULTS

Monkeys were trained to perform a free-viewing visual search task as described in previous 

studies (Bichot et al., 2005; Zhou and Desimone, 2011), but with natural images (including 

those of faces) rather than simple colored shapes in order to increase selective responses in 

IT (Desimone et al., 1984; Moeller et al., 2008). Briefly, the animals were presented with a 

central cue object (serving as the search target) at fixation followed by a delay. The 

monkeys held the memory of the target during the delay. An array of 8 stimuli then 

appeared, containing both distracters and a single instance of the search target (Figure 1); the 

target and distracter items were pseudo-randomly chosen from a fixed set of 8 complex 

objects on each trial. The monkeys could use free gaze to find the target in the array, and 

they were rewarded for maintaining fixation on the target for 800 ms continuously. 

Detection trials, in which the search array contained only the target and no distracters, were 

randomly interleaved amongst the search trials in order to map neurons’ RFs across the 

twelve possible stimulus locations, as well as their visual selectivity for the objects used in 

the experiment.

As described above, we found it useful to distinguish cells recorded in the VPA versus VPS 

regions, and we therefore report their properties separately. Multi-unit activity was recorded 

simultaneously in IT, VPA, and FEF of two monkeys (monkey B, 15 sessions; monkey R, 

13 sessions), using multi-contact electrodes with 16 contacts spaced over 2.25 mm. We will 

refer to the multi-unit activity at each site simply as “units”. In two other monkeys, we 

recorded simultaneously from VPS, VPA, and FEF (monkey F, 19 sessions; monkey M, 11 

sessions). Penetrations were made through multiple holes in a grid, and surface 

reconstructions of the grid hole locations are shown in Figure S1. On two penetrations in the 

most anterior part of VPA, all units were unresponsive, and the data were not included in 

any analyses. Given the known topographically-organized RF eccentricity representation in 

FEF (Bruce et al., 1985), recording locations in this area were chosen based on exploratory 

mapping sessions so that RFs at the recording sites encompassed the fixed stimulus locations 

used throughout the study. Based on the depths within sulci at which units were recorded at 

various sites, we sampled a total of approximately 28, 34, 29, and 48 mm2 of cortex in IT, 

VPA, FEF, and VPS, respectively.
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Overall, monkeys performed similarly, finding the search target on >95% of trials after an 

average of 2.9 (+/− 0.2 SEM) saccades with an average saccadic latency of 203.8 ms (+/− 

3.8 ms SEM) over those recording sessions. These performance measures show that the 

animals used object information to efficiently guide their search as they were significantly 

smaller than would be expected if the animals had chosen to search the display strictly 

serially or randomly (i.e., compared to averages of 4.5 saccades or 800 ms fixation 

durations; one-sample T-tests, t = 6.75 and 160.37, respectively, P < 10−8 for both 

comparisons). Data from the animals have been combined because they were qualitatively 

similar (one-way ANOVA; number of saccades, F = 1.12, P = 0.35; saccade latency, F = 

0.43, P = 0.73).

Stimulus selectivity

In our sample, we found significant stimulus selectivity in VPA, VPS, and IT in 35%, 27%, 

and 48% of the units, respectively, based on an ANOVA (evaluated at P < 0.05) computed 

on the responses to the set of stimuli in the detection trials. Figure 2A shows the ordered 

responses from best to worst stimulus for those cells. The locations of stimulus-selective 

units in PFC are shown in Figure S2. In contrast, no units in FEF showed stimulus 

selectivity based on the same ANOVA, consistent with previous studies of this area (Bichot 

and Schall, 1999; Bichot et al., 1996; Mohler et al., 1973; Schall et al., 1995). Thus, in terms 

of feature selectivity, cells in VPA were more similar to the other two areas than to FEF. 

The time courses of feature selective responses for the cue presented at the fovea and the 

cued target presented alone in the detection trials in VPA, IT, and VPS are shown in Figures 

3A and B.

Spatial selectivity

We tested for significant spatial selectivity (RFs), using an ANOVA (P < 0.05) computed on 

the responses to extrafoveal stimuli in the detection trials. In VPA and VPS, about two-

thirds (104/154 and 64/108, respectively) of stimulus-selective neurons also had well-

defined extrafoveal RFs determined by significant differences in average responses across 

extrafoveal stimulus locations (Figure S2), while only about half of IT stimulus-selective 

neurons (61/121) exhibited such extrafoveal spatial selectivity. The remaining neurons in all 

these regions usually had very large receptive fields responding to all stimulus locations 

equally (i.e., no statistical difference), including locations in the ipsilateral visual field. As 

shown in Figure 2B, the RFs of the units with significant spatial tuning were, in our sample, 

largest on average in VPS, followed by IT cortex, and then VPA and FEF, which were 

similar to each other. While no neurons in VPA had RF centers in the ipsilateral hemifield, 

many of the RFs (40/104) extended into the ipsilateral hemifield. It is possible that with 

longer presentation times, more of the PFC units would have had larger, more bilateral RFs 

(see (Zaksas and Pasternak, 2006)) as Kadohisa et al (2015) have shown that large PFC 

fields develop slowly over time. Thus, both VPA and VPS have spatial and feature 

selectivity, consistent with previous studies of PFC (Everling et al., 2006; Rainer et al., 

1998; Rao et al., 1997), although the spatial selectivity in VPA is more similar to FEF.

Many units in IT and VPS with spatially-selective extrafoveal responses also responded 

significantly to the cue presented foveally (46% and 49%, respectively), whereas this was 
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less frequent in VPA and FEF (37% and 18%, respectively). The median RF center 

eccentricity of the spatially selective units was 6 degrees (dva) in all areas (Figure S3) and 

was not significantly different across areas (Kruskal-Wallis one-way ANOVA, χ2 = 1.81, P 

= 0.61).

Persistent stimulus selective activity

Given that VPA, VPS and IT cortex all showed stimulus-selective cue responses, we asked 

whether cue-related information persisted throughout the trial. Figure 3 shows the 

population responses in the three stimulus-selective areas during several phases of the search 

trials, separately for trials when the preferred versus non-preferred stimulus was the search 

cue. It was not possible to perform this analysis for FEF as the units did not have preferred 

stimuli. Population responses leading up to the first saccade were analyzed separately from 

later saccades as they contain the visually-evoked response to array onset (Bichot et al., 

2005; Zhou and Desimone, 2011).

Cells in all three areas showed stimulus selective responses to the search cues and the target 

presented alone in detection trials, as shown in the population average histograms for the 

preferred and non-preferred stimulus for each cell in Figure 3A and B, respectively. 

However, cells in VPA differed from cells in the other two areas in that the population 

activity remained higher throughout the search trial when their preferred stimulus was the 

cue (i.e. when the animal was searching for the preferred stimulus as the target) than when 

the non-preferred stimulus was the cue (Figures 3C–F and S4, Table S1), and this higher 

activity persisted through the memory delay and through the response intervals for targets 

and distracters, on the first saccade and subsequent saccades. Units in VPS had higher 

activity during the memory delay following the preferred stimulus as the cue, but, unlike in 

VPA, this difference was only marginally significant on the first saccade and did not persist 

for the following saccades to targets or distracters. Thus, unlike VPS, VPA retained 

information about the sought-after target identity during the major decision times during the 

trial, and the difference between VPA and VPS was highly significant (T-test, difference in 

normalized activity between preferred search and non-preferred search; 100–200 ms after 

array onset [before first saccade], saccade to target: t = 6.14, P < 10−8, saccade to distractor: 

t = 5.99, P < 10−8; 100–200 ms from previous fixation [before subsequent saccades], 

saccade to target: t = 4.83, P < 10−5, saccade to distractor: t = 5.30, P < 10−6). Units in IT 

cortex gave somewhat higher responses to the preferred stimulus as the target on the first 

and subsequent saccades, but this difference did not persist for saccades to distracters. The 

IT response modulation might have been due to spatial attention to the target stimulus.

Feature selection/attention

Although VPA had distinctive stimulus-selective activity throughout the trial, a key question 

was whether the cells communicated information about the relationship between the 

attended target features and the features of the stimulus in the RF, independent of spatial 

attention. To separate out the effects of feature-based and spatial-based attention, we used a 

strategy that has been used in previous studies of FEF and V4 (Bichot and Schall, 1999; 

Gregoriou et al., 2009; Zhou and Desimone, 2011). For feature attention, we examined 

responses to the stimulus in the RF at times during the trial when the animal was preparing a 
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saccade to a stimulus outside the RF. With spatial attention directed outside the RF, we 

asked whether the response to the RF varied according to whether the RF stimulus matched 

the features of the searched-for target (red lines in Figures 4A and S5A) or did not match 

(i.e., a distractor was in the RF; blue lines in Figures 4A and S5A). For spatial attention, we 

examined responses to the target stimulus in the RF when the animal was preparing to make 

a saccade to it (green lines in Figures 4A and S5A) or to a stimulus outside the RF (red lines 

in Figures 4A and S5A). For VPA, IT, and VPS, we analyzed activity on trials in which the 

animals searched for the preferred target of cells; for FEF, all target conditions were 

combined since the neurons did not show selectivity for the different stimuli.

Population responses in VPA and FEF showed substantial effects of feature based attention 

(100–200 ms after array onset, T-test, VPA: t = 9.42, P < 10−14; FEF: t = 8.96, P < 10−15), 

with an increase in response of 21.8% and 8.1% with feature attention in VPA and FEF, 

respectively. IT cortex and VPS showed smaller effects of feature attention (4.2% and 1.1% 

increase, respectively), and these effects were not significant during the same time period 

(IT: t = 1.06, P = 0.29; VPS: t = 0.52, P = 0.60).

We compared the latencies of feature selective effects in two different ways. We first 

computed the earliest detectable effect of attention in the population response histograms. 

The population histograms might reveal very early differences that are not significant at the 

level of individual units, although very few units may contribute to early effects. The latency 

for the effects of feature-based attentional selection in VPA (90 ms) was somewhat earlier 

than in FEF (100 ms), although the difference was not statistically significant (two-sided 

permutation test, P = 0.62). In contrast to both VPA and FEF, the effects of feature attention 

in VPS did not meet the criteria for the determination of a feature attention latency (i.e., 

difference in activity significant at the 0.05 level for at least 10 ms). The effects of feature 

attention in IT were smaller than in VPA and FEF, and the time of earliest feature selection 

in IT (189 ms) was significantly later than in both VPA (P = 0.015) and FEF (P = 0.024).

We next compared the areas by measuring the latency of feature attention effects for each 

recorded unit in each area, and then comparing the cumulative distributions of latencies, as 

shown in Figure 4B. Small proportions of cells in VPA and FEF showed early effects of 

feature attention (below 100 ms), consistent with the analysis of population histograms, but 

the cumulative distribution in VPA rose more steeply (earlier) than in FEF and the other two 

areas. At a cumulative distribution of 10 % of units, VPA led FEF by 20 ms, and this 

difference grew to 58 ms by a cumulative distribution of 35%. Overall, VPA had the largest 

proportion of units exhibiting feature-based selection (Chi-square test, vs. FEF, χ2 = 6.15, P 

= 0.013; vs. IT, χ2 = 12.51, P < 10−3; vs. VPS, χ2 = 11.03, P < 10−3) with overall earlier 

onset times (T-test, vs. FEF, t = 2.45, P = 0.016; vs. IT, t = 3.98, P < 10−3; vs. VPS, t = 3.06, 

P < 0.01), followed by FEF, while IT and VPS had the lowest proportions of units exhibiting 

such discrimination along with overall later times (see also Figure S2).

A signal-detection analysis also showed that VPA exhibited greater feature-based selection 

than any other region we sampled, as shown in Figure 5A. For each cell, the magnitude of 

feature-based selection was quantified by calculating the area under the receiver operating 

characteristic curve (AUROC) comparing activity (100–200 ms after array onset) when the 
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target was in the RF and monkeys made a saccade to a distractor outside the RF to activity 

when the target was outside the RF and monkeys made a saccade to a distractor outside the 

RF. This measure of feature-based selection was largest in VPA (one-way ANOVA, F = 

145.22, P < 10−62; T-tests comparing VPA to each of the other regions, P < 10−27 for all 

comparisons). Overall, it appears that feature-based selection in VPA occurs early enough 

and with a magnitude large enough to influence or be the source of feature-based selection 

in FEF. Feature-based selection is not a prominent property in VPS, clearly distinguishing it 

from VPA and FEF.

VPA units also showed feature enhancement for their non-preferred target in the RF (Figure 

S5B), albeit with weaker and later effects than when animals searched for the neurons’ 

preferred target. No feature enhancement was found in either IT or VPS for the non-

preferred target.

Spatial selection/attention

The time course of spatial selection revealed a nearly opposite trend compared to feature 

attention. We first examined the earliest evidence of spatial selection in the population 

response histograms. In contrast to feature-based selection, spatial selection occurred earlier 

in the FEF population response than in VPA (105 ms vs. 138 ms), although again the VPA-

FEF difference was not significant (P = 0.35). The time of spatial selection in VPS (140 ms) 

was similar to that in VPA (see also Figure S2), while spatial selection did not meet the 

criteria to determine an onset of discrimination in IT.

As was found with feature-based selection, the analysis of cumulative distributions of spatial 

selection latencies revealed clear differences among the areas (Figure 4B). Small 

proportions of cells in VPA and FEF showed early effects of spatial selection, consistent 

with the analysis of population histograms, but the cumulative distribution in FEF rose more 

steeply (earlier) than in VPA and the other two areas. At a cumulative distribution of 10 % 

of units, FEF led VPA by 16 ms, and this difference grew to 39 ms by a cumulative 

distribution of 35%. Overall, FEF had the largest proportion of units (Chi-square test, vs. 

VPA, χ2 = 4.93, P = 0.026; vs. IT, χ2 = 20.17, P < 10−5; vs. VPS, χ2 = 8.29, P < 0.01) 

showing spatial-based selection with the earliest onset times (T-test, vs. VPA, t = 2.91, P < 

0.01; vs. IT, t = 2.99, P < 0.01; vs. VPS, t = 2.26, P = 0.025).

A signal-detection analysis also showed that FEF exhibited greater spatial-based selection 

than any other region we sampled, as shown in Figure 5B. For each cell, the magnitude of 

spatial-based selection was quantified by calculating the AUROC comparing activity (100–

200 ms after array onset) when the target was in the RF and monkeys made a saccade to it to 

activity when the target was in the RF and monkeys made a saccade outside the RF. This 

measure of spatial-based selection was largest in FEF (one-way ANOVA, F = 33.56, P < 

10−18; T-tests comparing FEF to each of the other regions, P < 10−5 for all comparisons). 

These results suggest that while VPA may be the source of feature-based selection in FEF, 

the decision to make a saccade to a potential target likely originates in FEF and/or other 

related oculomotor structures and may be passed on to VPA. VPS is similar to VPA in terms 

of spatial selection, but clearly differs in feature-based selection.
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Deactivation studies

To test for a causal role of VPA in feature-based selection, we tested the effects of VPA 

deactivation on both behavioral performance and selection in FEF during the random-design 

visual search (i.e., target changed randomly from trial to trial). We limited injections to the 

central portion of the VPA recording region, to avoid spread of muscimol into FEF and 

VPS. We nonetheless inactivated a substantial portion of this central region, using muscimol 

injections in six sessions (three each in monkeys F and M). In each session, three injections 

spaced 700 μm apart in depth were made with cannulas at each of two locations (Figure S1). 

Because the cannulas were inserted at an angle to the cortex, several square mm of cortex 

relative to the surface were likely affected.

Behavior before and after inactivation of VPA revealed significant post-inactivation deficits 

when the target was in the contralateral hemifield to the injection hemisphere, and to a lesser 

extent, when it was on the midline (Figures 6A and S6A, Table S2). The number of saccades 

to find a contralateral target increased while the opposite was true for an ipsilateral target. 

The total time to find the target, saccadic reaction times, and the percentage of trials in 

which the animals did not find the target all increased for both contralateral and midline 

targets. There were no effects on behavioral performance as a function of search block 

sequence or time during a session as assessed in training sessions a day prior to injection 

sessions (Figure S6B).

We also found a significant increase in saccades to the target with a following saccade away 

from it in the contralateral hemifield (pre: 7.5%, post: 10.5%; T-test, t = 4.56, P < 0.01), and 

a decrease of such behavior in the ipsilateral hemifield (pre: 7.9%, post: 3.8%; t = 7.63, P < 

10−3). Furthermore, the pattern of distractor fixations in the contralateral hemifield was 

significantly affected by inactivation compared to the ipsilateral hemifield (correlation 

between pre- and post-inactivation distractor fixation patterns; mean Fisher z-transform: 

contralateral, 0.65, ipsilateral, 0.82; T-test, t = 8.11, P < 10−3). In sum, the monkeys had 

difficulty matching stimuli to the cue in the contralateral hemifield following inactivation of 

VPA.

The injection sessions were treated as independent across days, to account for day-to-day 

variations in performance but they were not independent across locations in VPA because of 

the large size of the injections, as described above. As a conservative test of the deactivation 

effects on behavior, we summed the trials across all deactivation sessions and simply 

compared proportions of saccade errors before and during the deactivations using a chi-

square test. This test also showed a significant increase in errors post-inactivation for targets 

in the contralateral hemifield and on the midline (χ2 = 124.11, P < 10−28; and χ2 = 37.77, P 

< 10−9, respectively), but not for targets in the ipsilateral hemifield (χ2 = 3.19, P = 0.07).

We recorded the activity of 42 FEF units during visual search before and after VPA 

inactivations (Figures 6C and S7). While neural activity during detection trials (100–200 ms 

following stimulus onset) was not affected by VPA inactivation (repeated-measures two-

way ANOVA; target in RF vs. out RF, F = 2057.1, P < 10−15; pre- vs. post inactivation, F = 

3.83, P = 0.06; interaction, F = 0.06, P = 0.80), activity during search was significantly 

altered (two-way ANOVA; target in RF and saccade to target vs. target in RF and saccade 
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outside RF vs. target outside RF and saccade outside RF, F = 85.27, P < 10−15; pre- vs. post 

inactivation, F = 8.55, P < 0.01; interaction, F = 12.45, P < 10−4). Most strikingly, feature 

selection in FEF (difference between red and blue lines) was completely abolished post-

inactivation (T-test, pre-inactivation, t = 6.27, P < 10−6; post-inactivation, t = 0.64, P = 

0.53). By contrast, even though neural activity when the saccade was made to the target in 

the RF was modestly lower post-inactivation, the effect of spatial attention (difference 

between green and red lines) was still present (t = 6.05, P < 10−6), and it was not 

significantly affected by the inactivation (pre- vs. post-inactivation, t = 1.29, P = 0.21). The 

differential effect of VPA inactivation on feature and spatial attention was confirmed by a 

signal-detection analysis. AUROC computed on a cell-by-cell basis in the 100–200 ms 

period after array onset showed that feature attention information significantly decreased 

(pre: 0.633, post: 0.508; T-test, t = 13.27, P < 10−21), while spatial attention information was 

not significantly altered (pre: 0.717, post: 0.698; T-test, t = 1.25, P = 0.21). Thus, VPA 

inactivation eliminated the effects of feature selection in FEF but not spatial selection.

As a control for the possibility that the effects of feature selection in FEF would normally 

decline in the second half of the recording session even without VPA inactivation, we 

compared feature selection in FEF of the same monkeys in the first versus second half of the 

session on days without VPA deactivation (these sessions had twice as many search trials as 

those during the pre- or post-inactivation blocks in the deactivation sessions). The results of 

recordings from 58 neurons (Figure S5A) showed no difference in the magnitude of feature 

selection between the two halves of the sessions (T-test, t = 0.30, P = 0.77).

Previous studies showed that when attention to a cue or stimulus is repeated for many trials, 

the effects of PFC lesions on attention are greatly reduced (Pasternak et al., 2015; Rossi et 

al., 2007). We therefore repeated the inactivation of VPA in six additional sessions (three in 

each monkey) using a blocked design, in which the target cue remained the same in blocks 

of 20 consecutive trials. We found that while deficits after inactivation were somewhat 

mitigated (Figure 6A, Table S2), monkeys still made more saccades, took longer to find the 

target, and made more errors when searching for a target in the contralateral hemifield. 

However, there were no longer significant effects on saccade latencies, or for targets at 

midline locations in general.

We also recorded from 38 units in FEF during these blocked sessions (Figures 6D and S7). 

Consistent with the somewhat reduced behavioral deficits in the blocked-design search, the 

effects of feature attention in FEF were still significant post-inactivation but smaller 

compared to pre-inactivation (T-test, t = 8.43, pre/feature, P < 10−9; post/feature, t = 2.45, P 

= 0.02; pre vs. post, t = 4.54, P < 10−4), while spatial enhancement was again unchanged 

after inactivation compared to before (pre/spatial, t = 3.08, P < 0.01; post/spatial, t = 2.99, P 

< 0.01; pre vs. post, t = 0.41, P = 0.68). The differential effect of VPA inactivation on 

feature and spatial attention was again confirmed by a signal-detection analysis. AUROC 

computed on a cell-by-cell basis in the 100–200 ms period after array onset showed that 

feature attention information significantly decreased (pre: 0.672, post: 0.559; T-test, t = 

12.22, P < 10−18), while spatial attention information was not significantly altered (pre: 

0.605, post: 0.583; T-test, t = 1.79, P = 0.08). Also, consistent with the lack of changes in 

spatial selection in FEF and neural activity during detection trials, neither accuracy nor 
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saccade latencies during the detections trials that were interleaved with either variant of the 

search task were affected by VPA inactivation (Figure 6B, Table S2). In sum, both behavior 

in the task and the effects on FEF responses are more sensitive to the loss of VPA inputs 

when the cue changes frequently, but VPA seems important for feature-attention even with 

repeated cues.

Finally, we compared the behavioral effects of VPA inactivation to those from inactivating a 

nearby portion of VPS (Figure 7A, Table S3). We inactivated VPS with muscimol in six 

sessions (three each in monkeys F and M); in each session, three injections spaced 1 mm 

apart in depth were made at each of two different locations (Figure S1). Similar to the 

effects of VPA inactivation, inactivation of VPS caused large behavioral deficits for targets 

in the contralateral hemifield or on the midline during random-design visual search. 

Following inactivation, there were increases in the number of saccades made to find the 

target, the total time to find the target, and error rates for both contralateral and midline 

target locations, and increases in saccade latencies for all target locations. However, unlike 

with VPA inactivation, there were no significant behavioral deficits during blocked-design 

search. Performance during detection trials was not affected by VPS inactivation in either 

type of session (Figure 7B, Table S3). Thus, unlike VPA, VPS seems to play an important 

role in feature based selection only when attention switches frequently.

DISCUSSION

Although much is known about the sources of top-down signals for visual spatial attention 

in monkey cortex, much less has been known about the sources of signals important for 

feature attention. A previous study found that feature-based target selection in area V4 

occurs later than in FEF (Zhou and Desimone, 2011), suggesting that the earliest site of 

feature-based selection may be outside of visual cortex. Here we found that neurons in the 

VPA region of prefrontal cortex exhibit feature-based attentional modulation with a time 

course early enough to be a major cause of feature-based selection in FEF and possibly all 

other ventral stream areas. Combining our results with the earlier study of V4 and FEF by 

Zhou and Desimone (2011), feature-based selection also occurs earlier in VPA than in area 

V4. Spatially-selective VPA units also had RFs similar to those in FEF but, unlike FEF, 

many also showed selectivity for the objects used in our task. This selectivity could reflect 

an underlying selectivity for the component features of the objects, or selectivity for the 

objects acquired through learning to search for them (i.e., based on task demands) (e.g. 

(Freedman et al., 2001; Kadohisa et al., 2015; McKee et al., 2014)). Thus, VPA units seem 

to combine information about object features with their spatial location (see also (Kadohisa 

et al., 2015; Rainer et al., 1998; Rao et al., 1997)), and may provide information about both 

the identity and location of targets with behavioral relevance in the visual field.

We recorded from cells in IT cortex because it seemed possible that IT cortex might contain 

early feature-based signals for target selection even though area V4 does not. However, we 

found relatively late selection signals in IT, consistent with the findings of earlier studies of 

IT responses during search tasks (Chelazzi et al., 1998; Monosov et al., 2010; Sheinberg and 

Logothetis, 2001). Our results extend those previous findings by providing the first direct 
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comparison of the time course of feature-based attention in IT and FEF dissociable from the 

effects of spatial selection in a task with an attentional template.

VPA as a source of feature-based selection is supported by our finding that feature-based, 

but not spatial selection in FEF is impaired by VPA inactivation. Following VPA 

inactivation, FEF cells respond as though they no longer have access to information about 

the location of objects with target features. We do not yet know whether VPA also sends 

direct feedback to other visual areas to support feature-based attention in these areas. 

Consistent with the differential effects of VPA inactivation on feature and spatial attention 

in FEF, our analysis of the time course of attentional modulation suggests that, within PFC, 

spatial selection originates in FEF, and feedback from FEF is likely a major (but not sole) 

source of feedback to visual cortex during spatial attention (Gregoriou et al., 2014; Moore 

and Armstrong, 2003; Moore and Fallah, 2001).

How do VPA cells compute the similarity between the features of the stimulus in their RF 

and the features of the target that the animal is searching for, or what has been referred to as 

the attentional template? One clue is that VPA seems to be unique among the regions we 

studied in having an explicit representation of the attentional template (the “cue”) 

throughout the delay and the search trial, even persisting across saccades. VPA cells have 

higher firing rates throughout the trial when their preferred stimulus is the cue/target, 

compared to non-preferred stimuli. This persistence of the attentional template in VPA may 

be used to directly compute stimulus similarity during search.

The combined feature and spatial information we observed in VPA is consistent with 

previous recordings in overlapping parts of PFC. However, because we recorded multi-unit 

activity, we cannot be certain that feature and spatial selectivity was combined at the level of 

individual VPA cells. Other studies have shown that individual PFC neurons can encode a 

working memory of both objects and locations during the delay period (Kadohisa et al., 

2015; Rainer et al., 1998; Rao et al., 1997). Furthermore, the sustained representation of the 

attentional template we found is similar to the robust memory trace observed in PFC, but not 

IT, during a non-spatial match-to-sample task (Miller et al., 1996). Similarly, the 

discrimination of target objects (even when non-preferred) in VPA is consistent with the 

selective representation of task-relevant objects at preferred locations previously found in 

PFC (Everling et al., 2006).

We have also shown that such feature-based modulation of neural activity throughout the 

search trial is not ubiquitous in PFC, with nearby neurons in VPS exhibiting little to no such 

effects. The time of feature selection effects in VPS for units that showed any such effect 

was also significantly later than those in VPA and FEF. Furthermore, while the effects of 

VPS inactivation during visual search were mitigated by repetition of the target cue, deficits 

persisted with cue repetition after VPA inactivation, suggesting that VPS may be more 

important for attention switching or working memory while VPA may be more important for 

feature attention across the board. It is possible that while neurons in VPS are more involved 

in encoding the cue or the ability to adapt to changes in the cue, neurons in VPA process the 

stimuli of the search display as potential matches to the cue (i.e., a spatial “match-to-

sample”). Neither region appears to play a role in saccade production per se; their 

Bichot et al. Page 11

Neuron. Author manuscript; available in PMC 2016 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



inactivation does not cause any deficits in making a visually-guided saccade to a target 

presented alone, unlike the impairments observed following FEF inactivation (Dias and 

Segraves, 1999).

Our goal was to determine whether activity in PFC beyond FEF can be the source of feature-

based selection signals found in FEF, and we have found units consistent with this 

hypothesis in VPA. Anatomical studies have shown that this region has connections with 

TEO, IT cortex and possibly area V4 (Barbas and Pandya, 1989; Webster et al., 1994). 

Although our recordings in VPA showed clear differences with cells recorded in adjacent 

areas VPS and FEF, we do not claim that VPA is a functionally defined area with clear 

boundaries. We did not study all of VPS and other parts of PFC to be sure whether there are 

other regions with properties similar to those in VPA. Several other studies have reported 

substantial regional overlap for coding of different types of information in dorsolateral PFC 

(e.g. (Kadohisa et al., 2015; Wallis et al., 2001; Watanabe, 1986; White and Wise, 1999)). 

One possible explanation could be that many complex neuronal properties are shared across 

PFC subregions but signals for top-down feature based attention are more concentrated in 

VPA. The adjacency of VPA to FEF suggests it could have a special relationship to this 

area. Another possible explanation could be that many studies of PFC tested across different 

subregions for the presence or absence of various types of information at any time in the 

trial (e.g., the delay period following the sample during a match-to-sample paradigm). We 

also found feature-based attentional effects on responses in V4, IT, FEF, and VPA at some 

time point during the trial, and would likely find them throughout the visual cortex, PFC, 

and regions of the parietal cortex through feedforward and feedback connectivity. However, 

the critical question for this study was where the feature selection effects emerged the 

earliest, and that appears to be VPA. Consistent with our findings, a recent study in which 

monkeys reported the color or motion of foveally presented stimuli found that choice signals 

developed in lateral prefrontal cortex and parietal regions and were fed back to FEF and 

sensory cortex (Siegel et al., 2015).

We have referred to our recording region as VPA simply as a description of its anatomical 

location. Our recording sites likely encompass multiple cytoarchitectonic areas such as 

Areas 45A and 12, and even possibly Area 46v. In future studies, it will be necessary to 

functionally map much more of the PFC, including more dorsal and anterior portions, to 

determine whether VPA is unique, or whether it might even be considered a separate, 

functionally-defined ”region”. An imaging study in monkeys searching for a salient target 

found activation only within a restricted portion of PFC, including the region we termed 

VPA, FEF and a posterior part of Area 46 (Wardak et al., 2010).

We did not find evidence for the early selection of targets defined by feature in IT cortex, 

consistent with the results of other studies in IT during visual search (Chelazzi et al., 1998; 

Monosov et al., 2010; Sheinberg and Logothetis, 2001). However, we did not record 

throughout the entire IT region, and therefore we cannot be sure that some IT cells with 

properties similar to those in VPA do not exist. Likewise, there could be other cortical 

sources for signals important for feature attention outside of PFC, including the parietal 

cortex, for example. At this stage, we can only be confident that VPA has the necessary 
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signals at an early enough time to support feature based selection, and that VPA deactivation 

leads to behavioral impairments and a loss of feature-based selection in FEF.

Altogether, our results suggest a prefrontal, rather than visual cortical, source of feature-

based attention, culminating in the priority maps in FEF from which a target is chosen for 

overt or covert orienting. FEF may, in turn, send feedback to topographically organized 

visual areas, enhancing activity at locations in the visual field representations containing 

stimuli that share target features. In that case, some of the effects of feature-based attention 

found in extrastriate areas (Bichot et al., 2005; Chelazzi et al., 2001; Hayden and Gallant, 

2005; Martinez-Trujillo and Treue, 2004; McAdams and Maunsell, 2000; Motter, 1994) 

may have been caused by FEF feedback targeted strictly to the visual field locations, rather 

than the representation of stimulus features, of potential targets.

Studies examining the relationship between PFC and visual cortex during working memory 

for motion signals in match-to-sample tasks have found that, while robust template encoding 

is indeed present in PFC, MST may be the source of the delay activity seen in PFC 

(Mendoza-Halliday et al., 2014). MT may also play an important role in the comparison 

between sample and test stimuli (Zaksas and Pasternak, 2006). Our analyses have focused 

on the search period to determine the source of feature attention and thus it is difficult to 

make direct comparisons with match-to-sample tasks in which distracting information is not 

present with the target. It is also possible that synchrony measures (Gregoriou et al., 2009) 

or dynamic population coding (Mante et al., 2013; Stokes et al., 2013) beyond the scope of 

this study will reveal more complex interactions between different subregions of PFC and 

visual cortex in different phases of the search task.

Nonetheless, our findings in VPA are consistent with a recent study showing the prefrontal 

gating of object-based attention in humans (Baldauf and Desimone, 2014), and VPA may be 

the nonhuman primate homolog of the inferior frontal junction (IFJ) described in that report 

as a source of feedback in object-feature based attention (also see (Neubert et al., 2014)). 

Given the similarity between the “attentional template” that seems to be represented in VPA, 

and the object representations thought to be actively maintained during visual working 

memory and recall, VPA may have a very general role in covertly maintaining and 

manipulating visual object information.

EXPERIMENTAL PROCEDURES

Subjects and surgical procedures

Four adult male rhesus monkeys weighing 8–10 kg were used. Under aseptic conditions, 

monkeys were implanted with a headpost and chambers that allowed access to brain regions 

for neural recording and inactivation. All procedures and animal care were in accordance 

with NIH guidelines.

Behavioral tasks

The experiments were under the control of a PC computer using MonkeyLogic software 

(University of Chicago, IL), which presented the stimuli, monitored eye movements, and 

triggered the delivery of the reward. Monkeys were seated in an enclosed chair and eye 
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position was monitored using an EyeLink II infrared system (SR Research Ltd., Ontario, 

Canada). Stimuli were presented on a video monitor viewed binocularly at a distance of 57 

cm in a dark isolation box.

The stimuli were a fixed set of eight natural object images that were matched for the number 

of pixels different from the gray background, and subtended an area of approximately 

1.5×1.5 dva. After fixating a small, white central fixation point for 800 ms, the monkeys 

were presented with a central cue that informed it of the stimulus selected as the detection or 

search target for that trial. In the search condition, the remaining seven stimuli became 

distractors for that trial. The cue stimulus stayed on for 1000 ms, after which time it was 

extinguished and replaced by the fixation spot for another 800 ms. The monkeys were 

required to hold fixation at the center of the screen during this delay period. At the end of 

the delay, the fixation spot was extinguished and, simultaneously, either the target was 

presented alone (detection trials) or presented among distractors (search trials). The 

monkeys were required to fixate the target stimulus for 800 ms continuously to receive a 

reward. For search trials, the animals had 8 s from search array onset to find the target, and 

no constraints were placed on their search behavior in order to allow them to conduct the 

search naturally. Even though the animals could fixate distractors as long as they wanted 

within a trial, only 3.5% of distractor fixations lasted 800 ms or longer. A search trial was 

considered an error only if an animal never fixated the search target continuously for 800 ms 

within the 8 s search duration. For detection trials, the animals had 50 ms to enter the target 

window and keep fixation at the target location until reward (i.e., multiple saccades were not 

allowed during detection trials in order to accurately map the properties of the RF). The 

target location was selected pseudo-randomly such that, within an experimental block, there 

were fifteen repetitions (five detection and ten search trials) of each stimulus presented as 

the target at each of twelve possible stimulus locations. The target locations, like the object 

identities, were fixed throughout the experiment. Once the location for the target stimulus 

was selected, the remaining seven distractors occupied locations selected randomly from the 

remaining eleven. The target identity, location, and trial type (i.e., detection vs. search) 

changed pseudo-randomly each trial, and all eight stimuli became the target on an equal 

number of total correct trials within an experimental block (1440 trials total for both 

detection and search trials). All neurophysiological recording data presented (except those 

from inactivation sessions – see below) came from sessions in which monkeys successfully 

completed all conditions in an experimental block.

For inactivation sessions, given the added duration from the injection procedure and 

resulting increased difficulty in maintaining stable recordings, the experimental block length 

was reduced by implementing only three repetitions of each target stimulus at each target 

location for detection trials, and five repetitions for search trials. In the random design, 

target identity, location, and trial type changed pseudo-randomly each trial as described 

above for regular recording sessions. In the blocked design, the search target remained the 

same in blocks of 20 correct trials. The sequence of targets between blocks was pseudo-

random such that all conditions were included within an experimental block.
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Neural recordings

Recordings began only after the monkeys were fully proficient in the search task and 

performance was stable. Recordings were conducted with multi-contact laminar electrodes 

(Plexon Inc., Dallas, TX) with 16 contacts spaced at 150 μm intervals, using the Omniplex 

system (Plexon Inc.). Due to the long duration of sessions, it was difficult to keep isolation 

on a single neuron; thus, the majority of the data are from small clusters of cells, or multi-

unit activity, and are presented as such. To address the possibility that overlapping neural 

activity was recorded on adjacent contacts, we compared the zero-shift cross-correlation 

during the fixation period of signals on adjacent contacts to those at least three contacts 

away. There was only a very small increase of 1.2% of coincident spikes on adjacent 

contacts (2.9% vs. 4.1%), which may be partly due to an increased probability of common 

input connectivity of units on nearby contacts.

A grid system with holes 1 mm apart was used inside all the recording chambers to guide 

electrode penetrations and localize them relative to structural MRI images (see Figure S1 for 

recording sites). Penetration locations were confirmed with gray to white matter transition 

depths. FEF recording sites were in the rostral bank of the arcuate sulcus. VPS recording 

sites were in the ventral bank of the principal sulcus. VPA recording sites were on the pre-

arcuate gyrus, anterior to the arcuate sulcus and ventral to the principal sulcus, and the 

penetrations did not enter either the arcuate sulcus or the principal sulcus (i.e., white matter 

was reached by the expected depth).

Neural inactivation

Muscimol (5 μg/μl) was injected in either VPA or VPS. The locations and depths were 

chosen based on the basis of exploratory recordings (Figure S1). In a given session, we 

made injections of 1 μl at three different depths and two locations within the selected area. 

The injections started at the deepest location where neurons were found, and subsequent 

injections were made by retracting the cannulas by steps of 700 um in VPA and 1 mm in 

VPS. The injections were made at a rate of 0.05 μl/min with a 5-minute wait between 

injections, and data collection began 35 minutes after the last injection. When concomitant 

recordings were made in FEF, the electrode was not moved or adjusted after the injection 

relative to its location before the injection.

Data analysis

Spike density functions were generated by convolving spikes with an asymmetric, forward-

only filter designed to represent the postsynaptic consequences of cell activity (Thompson et 

al., 1996). The spike density function of each neuron was normalized by its maximum firing 

rate. The object and spatial selectivity of each site was determined using a two-way 

ANOVA with stimulus object and stimulus location during detection trials as the two main 

effects. If significant effects of object or location were found, post-hoc contrasts (T-tests) 

were used to determine preferred and non-preferred stimuli or locations inside and outside 

the RF of the units, respectively. Just as neurons can have RFs encompassing more than one 

stimulus location, they can also respond preferentially to more than one stimulus. The use of 

post-hoc contrasts to identify the preferred and non-preferred stimuli or locations, rather 

than just using best and worst ones was necessary in order to maximize the number of 
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useable trials for the analyses. Object selectivity at the fovea was determined separately with 

a one-way ANOVA of responses to the different objects presented as the cue. Overall, a 

median of two stimuli were selected as preferred in VPA, VPS and IT; medians of four, 

three and five stimuli were selected as non-preferred in VPA, VPS and IT, respectively.

The time courses of feature-based and spatial selection were determined with a T-test at 

each millisecond following the time of search array presentation. The onset of selection was 

defined as the first millisecond when the difference between conditions became significant 

(P < 0.05) and remained significant for the next 10 ms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Prefrontal cortex plays a key role in finding objects based on visual features

• Neurons in the VPA region of PFC exhibit the earliest times of feature selection

• Deactivation of VPA impairs the ability to find objects based on their features

• VPA appears to be the source of feature selection in FEF, but not spatial 

selection
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Figure 1. 
Schematic representation of behavioral tasks. Dotted circles represent the monkey’s current 

point of fixation. The initial sequence of events (i.e., fixation, cue, and delay periods) were 

the same in detection and free-viewing visual search trials. The target (i.e., cued stimulus) 

was presented alone in detection trials, and along with distractors in search trials. In this 

example of a search trial, the animal made two saccades (represented by the sequence of 

black arrows) before finding the target stimulus.
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Figure 2. 
Selectivity and spatial tuning in VPA, FEF, IT, and VPS. A. Selectivity tuning showing 

ordered average responses from best to worst stimulus in areas where neurons with stimulus 

selective responses were found (i.e., VPA, IT, and VPS). Selectivity tuning in FEF is shown 

for comparison purposes since no significant selectivity was found in the area. Responses 

are normalized by the response to the best stimulus. B. Receptive field (RF) spatial tuning in 

VPA (solid line), FEF (dotted line), IT (dashed line), and VPS (dashed-dotted line). The 

ratio of the average response at each location relative to the average response at the center of 

the RF (i.e., location eliciting the largest average response) is shown as a function of the 

distance between that location and the center of the RF. Error bars represent SEM. See also 

Figures S2 and S3.
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Figure 3. 
Neural correlates of working-memory in IT, VPA, and VPS during free-viewing visual 

search. Normalized firing rates averaged across the population of recorded neurons are 

shown when the search target was the neurons’ preferred stimulus (red lines) compared to 

when the search target was the neurons’ non-preferred stimulus (blue lines). SEM (±) at 

each time point is indicated by shading over the lines. Plotted are normalized population 

responses to the centrally presented cue (A), responses to the target presented alone during 

detection trials (B), responses during search prior to the first saccade made to the target or to 
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a distractor (C and D, respectively), and responses during visual search on the second and 

subsequent saccades when they were made to the target or to a distractor (E and F, 

respectively) with activity aligned to the end of the previous saccade at time zero. Only 

activity from correct trials and before saccade initiation (i.e., first saccade for B, C, and D, 

and subsequent saccade for E and F) was used in the analyses. SEM (±) at each time point is 

indicated by shading over the lines. See also Figure S4 and Table S1.

Bichot et al. Page 24

Neuron. Author manuscript; available in PMC 2016 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Time course of feature-based and spatial selection. A. From top to bottom, normalized 

responses in FEF, VPA, IT, and VPS, aligned to the onset of the search array when the first 

saccade was made to the target in the RF (green lines), when the target was in the RF but the 

saccade was made to a distractor outside the RF (red lines), and when the target was outside 

the RF (and a distractor was in the RF) and the saccade was made to a distractor outside the 

RF (blue lines). Responses in VPA, IT, and VPS were from correct trials and when the 

target was the preferred stimulus. Red vertical lines represent the onset of feature-based 

selection (difference between red and blue lines), and green vertical lines represent the onset 

of spatial selection (difference between green and red lines). SEM (±) at each time point is 

indicated by shading over the lines. Only spikes occurring prior to saccade initiation were 

used in the analyses. Because sample sizes were different across regions, we computed the 

timecourse of regions with more units by subsampling their population with the lowest 

number of units found in any region (i.e., IT) and obtaining an average over 10,000 

iterations; shown response SEM for these regions is the average of the SEM calculated for 

the subsamples. B. Cumulative distribution of feature-based (left) and spatial (right) 

attentional effect latencies, computed from individual recording sites. There were more 

available trials for analysis in FEF (due to the lack of stimulus selectivity) than the other 

regions which all had similar numbers of contributing trials. Therefore, we subsampled the 

available trials in FEF with the average number of trials used in VPA, VPS, and IT (i.e., 22 

trials for the target in RF / saccade to target condition, 37 trials for the target in RF / saccade 

outside RF condition, and 65 trials for the target outside RF / saccade outside RF condition) 

and averaged results over 10,000 iterations. Units that contributed less than five trials to any 
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of the conditions were excluded from all analyses. For feature selection, all units had at least 

10 trials contributing to each compared condition. For spatial selection, only 11/397 units 

had less than 7 trials in the saccade to the target in the RF condition which, as described 

above, yields on average the least number of trials. See also Figures S2 and S5.
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Figure 5. 
Magnitude of feature-based (A) and spatial-based (B) selection. Error bars represent SEM. 

The number of units contributing to each area is shown in Figure 4.

Bichot et al. Page 27

Neuron. Author manuscript; available in PMC 2016 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Effects of VPA inactivation on behavioral performance and target selection in FEF. A. 
Effects of VPA inactivation on behavioral performance during search trials as a function of 

target location relative to the hemisphere in which VPA was inactivated. Data from the 

random and blocked visual search sessions are shown in orange and blue, respectively. 

Across session averages of behavioral measures are shown before (hashed bars) and after 

(solid bars) VPA inactivation. Midline locations (on the vertical meridian) were neither 

ipsilateral nor contralateral to the hemisphere of inactivation. Asterisks (*) mark significant 

effects of inactivation. B. Effects of VPA inactivation on behavioral performance during 

detection trials. Behavioral measures are shown before (hashed bars) and after (solid bars) 

VPA inactivation. Data from random and blocked design sessions were combined as search 

cue frequency had no effect on saccades to targets presented alone. For all analyses, trials in 

which monkeys broke fixation prior to the presentation of the target alone (detection) or 

with distractors (search) were not included. C, D. Effects of VPA inactivation on selection 

in FEF during random and blocked visual search, respectively. Population normalized 

responses in FEF during detection trials (top panels) and search trials (bottom panels) are 
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shown before (left panels) and after (right panels) VPA inactivation. For detection trials, 

activity is shown when the target was inside (solid lines) or outside (dashed lines) the RF. 

For search trials, conventions as in Fig. 4. Only activity from correct trials and before 

saccade initiation was used in the analyses. See also Figures S6 and S7, and Table S2.
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Figure 7. 
Effects of VPS inactivation on behavioral performance. Conventions as in Fig. 6. See also 

Table S3.
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