624 research outputs found

    Phenotypic Plasticity of Climbing-Related Traits in the Ankle Joint of Great Apes and Rainforest Hunter-Gatherers

    Get PDF
    The negrito and African pygmy phenotypes are predominately exhibited by hunter-gatherers living in rainforest habitats. Foraging within such habitats is associated with a unique set of locomotor behaviors, most notably habitual vertical climbing during the pursuit of honey, fruit, and game. When performed frequently, this behavior is expected to correlate with developmentally plastic skeletal morphologies that respond to mechanical loading. Using six measurements in the distal tibia and talus that discriminate nonhuman primates by vertical climbing frequency, we tested the prediction that intraspecific variation in this behavior is reflected in the morphology of the ankle joint of habitually climbing human populations. First, to explore the plasticity of climbing-linked morphologies, we made comparisons between chimpanzees, gorillas, and orangutans from wild and captive settings. The analysis revealed significant differences in two climbing-linked traits (anterior expansion of the articular surface of the distal tibia and increased degree of talar wedging), indicating that these traits are sensitive to climbing behavior. However, our analyses did not reveal any signatures of climbing behavior in the ankles of habitually climbing hunter-gatherers. These results suggest that the detection of fine-grained differences in human locomotor behaviors at the ankle joint, particularly those associated with arboreality, may be obscured by the functional demands of terrestrial bipedalism. Accordingly, it may be difficult to use population-level characteristics of ankle morphology to make inferences about the climbing behavior of hominins in the fossil record, even when facultative arborealism is associated with key fitness benefits

    The Foot of \u3cem\u3eHomo naledi\u3c/em\u3e

    Get PDF
    Modern humans are characterized by a highly specialized foot that reflects our obligate bipedalism. Our understanding of hominin foot evolution is, although, hindered by a paucity of well-associated remains. Here we describe the foot of Homo naledi from Dinaledi Chamber, South Africa, using 107 pedal elements, including one nearly-complete adult foot. The H. naledi foot is predominantly modern human-like in morphology and inferred function, with an adducted hallux, an elongated tarsus, and derived ankle and calcaneocuboid joints. In combination, these features indicate a foot well adapted for striding bipedalism. However, the H. naledi foot differs from modern humans in having more curved proximal pedal phalanges, and features suggestive of a reduced medial longitudinal arch. Within the context of primitive features found elsewhere in the skeleton, these findings suggest a unique locomotor repertoire for H. naledi, thus providing further evidence of locomotor diversity within both the hominin clade and the genus Homo

    The foot of Homo naledi

    Get PDF
    Modern humans are characterized by a highly specialized foot that reflects our obligate bipedalism. Our understanding of hominin foot evolution is, although, hindered by a paucity of well-associated remains. Here we describe the foot of Homo naledi from Dinaledi Chamber, South Africa, using 107 pedal elements, including one nearly-complete adult foot. The H. naledi foot is predominantly modern human-like in morphology and inferred function, with an adducted hallux, an elongated tarsus, and derived ankle and calcaneocuboid joints. In combination, these features indicate a foot well adapted for striding bipedalism. However, the H. naledi foot differs from modern humans in having more curved proximal pedal phalanges, and features suggestive of a reduced medial longitudinal arch. Within the context of primitive features found elsewhere in the skeleton, these findings suggest a unique locomotor repertoire for H. naledi, thus providing further evidence of locomotor diversity within both the hominin clade and the genus Homo

    The Foot of Homo Naledi

    Get PDF
    Modern humans are characterized by a highly specialized foot that reflects our obligate bipedalism. Our understanding of hominin foot evolution is, although, hindered by a paucity of well-associated remains. Here we describe the foot of Homo naledi from Dinaledi Chamber, South Africa, using 107 pedal elements, including one nearly-complete adult foot. The H. naledi foot is predominantly modern human-like in morphology and inferred function, with an adducted hallux, an elongated tarsus, and derived ankle and calcaneocuboid joints. In combination, these features indicate a foot well adapted for striding bipedalism. However, the H. naledi foot differs from modern humans in having more curved proximal pedal phalanges, and features suggestive of a reduced medial longitudinal arch. Within the context of primitive features found elsewhere in the skeleton, these findings suggest a unique locomotor repertoire for H. naledi, thus providing further evidence of locomotor diversity within both the hominin clade and the genus Homo

    Water Intake in Growing Beef Cattle

    Get PDF
    Water is an essential part of livestock and human diets and is often thought of as an inexpensive, readily available renewable natural resource. However, the amount of competition between humans, wildlife, feed production, and livestock for high-quality water is increasing, not only from the effects of drought but from the pressure of a growing global population (Nardone et al., 2010). With limited resources available for production agriculture, there is a need to identify and select for efficient animals that can produce more product with fewer inputs. Although some work has been done in dairy cattle, very little data is available on individual animal water intake in modern beef cattle (Brew et al., 2011). The majority of the water intake data available in growing beef cattle is derived from dividing the total amount of water drunk in a pen divided by the number of animals in that pen (Sexson et al., 2010; Mader and Davis, 2004). Data derived from groups are not generally useful for the purposes of genetic evaluation, which aims to quantify individual animal variation in a trait for selection. However, in order to practice selection on a large scale, parameters for collecting phenotypic data must be established. The objectives of this study were to measure daily water intake on a large number of beef steers and to estimate the number of test days necessary to collect accurate water intake phenotypes

    Stark Broadening of the B III 2s-2p Lines

    Get PDF
    We present a quantum-mechanical calculation of Stark line widths from electron-ion collisions for the 2s1/2−2p1/2,3/22s_{1/2}-2p_{1/2,3/2}, lambda = 2066 and 2067 A, resonance transitions in B III. The results confirm the previous quantum-mechanical R-matrix calculations but contradict recent measurements and semi-classical and some semi-empirical calculations. The differences between the calculations can be attributed to the dominance of small L partial waves in the electron-atom scattering, while the large Stark widths inferred from the measurements would be substantially reduced if allowance is made for hydrodynamic turbulence from high Reynolds number flows and the associated Doppler broadening.Comment: 21 pages, 4 figures; to be published in Phys. Rev.

    Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jefferson Lab

    Full text link
    This report presents a brief summary of the science opportunities and program of a polarized medium energy electron-ion collider at Jefferson Lab and a comprehensive description of the conceptual design of such a collider based on the CEBAF electron accelerator facility.Comment: 160 pages, ~93 figures This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC05-06OR23177, DE-AC02-06CH11357, DE-AC05-060R23177, and DESC0005823. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purpose

    4-Aminopyridine-induced epileptogenesis depends on activation of mitogen-activated protein kinase ERK

    Get PDF
    Extracellular signal-regulated kinases such as ERK1 [p44 mitogen-activated protein kinase (MAPK)] and ERK2 (p42 MAPK) are activated in the CNS under physiological and pathological conditions such as ischemia and epilepsy. Here, we studied the activation state of ERK1/2 in rat hippocampal slices during application of the K+ channel blocker 4-aminopyridine (4AP, 50 lM), a procedure that enhances synaptic transmission and leads to the appearance of epileptiform activity. Hippocampal slices superfused with 4AP-containing medium exhibited a marked activation of ERK1/2 phosphorylation that peaked within about 20 min. These effects were not accompanied by changes in the activation state of c-Jun N-terminal kinase (JNK), another member of the MAP kinase superfamily. 4AP-induced ERK1/2 activation was inhibited by the voltage-gated Na+ channel blocker tetrodotoxin (1 lM). We also found that application of the ERK pathway inhibitors U0126 (50 lM) or PD98059 (100 lM) markedly reduced 4AP-induced epileptiform synchronization, thus abolishing ictal discharges in the CA3 area. The effects induced by U0126 or PD98059 were not associated with changes in the amplitude and latency of the field potentials recorded in the CA3 area following electrical stimuli delivered in the dentate hylus. These data demonstrate that activation of ERK1/2 accompanies the appearance of epileptiform activity induced by 4AP and suggest a cause-effect relationship between the ERK pathway and epileptiform synchronization

    The Glial Regenerative Response to Central Nervous System Injury Is Enabled by Pros-Notch and Pros-NFκB Feedback

    Get PDF
    Organisms are structurally robust, as cells accommodate changes preserving structural integrity and function. The molecular mechanisms underlying structural robustness and plasticity are poorly understood, but can be investigated by probing how cells respond to injury. Injury to the CNS induces proliferation of enwrapping glia, leading to axonal re-enwrapment and partial functional recovery. This glial regenerative response is found across species, and may reflect a common underlying genetic mechanism. Here, we show that injury to the Drosophila larval CNS induces glial proliferation, and we uncover a gene network controlling this response. It consists of the mutual maintenance between the cell cycle inhibitor Prospero (Pros) and the cell cycle activators Notch and NFκB. Together they maintain glia in the brink of dividing, they enable glial proliferation following injury, and subsequently they exert negative feedback on cell division restoring cell cycle arrest. Pros also promotes glial differentiation, resolving vacuolization, enabling debris clearance and axonal enwrapment. Disruption of this gene network prevents repair and induces tumourigenesis. Using wound area measurements across genotypes and time-lapse recordings we show that when glial proliferation and glial differentiation are abolished, both the size of the glial wound and neuropile vacuolization increase. When glial proliferation and differentiation are enabled, glial wound size decreases and injury-induced apoptosis and vacuolization are prevented. The uncovered gene network promotes regeneration of the glial lesion and neuropile repair. In the unharmed animal, it is most likely a homeostatic mechanism for structural robustness. This gene network may be of relevance to mammalian glia to promote repair upon CNS injury or disease

    Prior Coronary Artery Bypass Graft Surgery and Outcome After Percutaneous Coronary Intervention: An Observational Study From the Pan-London Percutaneous Coronary Intervention Registry.

    Get PDF
    Background Limited information exists regarding procedural success and clinical outcomes in patients with previous coronary artery bypass grafting (CABG) undergoing percutaneous coronary intervention (PCI). We sought to compare outcomes in patients undergoing PCI with or without CABG. Methods and Results This was an observational cohort study of 123 780 consecutive PCI procedures from the Pan-London (UK) PCI registry from 2005 to 2015. The primary end point was all-cause mortality at a median follow-up of 3.0 years (interquartile range, 1.2-4.6 years). A total of 12 641(10.2%) patients had a history of previous CABG, of whom 29.3% (n=3703) underwent PCI to native vessels and 70.7% (n=8938) to bypass grafts. There were significant differences in the demographic, clinical, and procedural characteristics of these groups. The risk of mortality during follow-up was significantly higher in patients with prior CABG (23.2%; P=0.0005) compared with patients with no prior CABG (12.1%) and was seen for patients who underwent either native vessel (20.1%) or bypass graft PCI (24.2%; P<0.0001). However, after adjustment for baseline characteristics, there was no significant difference in outcomes seen between the groups when PCI was performed in native vessels in patients with previous CABG (hazard ratio [HR],1.02; 95%CI, 0.77-1.34; P=0.89), but a significantly higher mortality was seen among patients with PCI to bypass grafts (HR,1.33; 95% CI, 1.03-1.71; P=0.026). This was seen after multivariate adjustment and propensity matching. Conclusions Patients with prior CABG were older with greater comorbidities and more complex procedural characteristics, but after adjustment for these differences, the clinical outcomes were similar to the patients undergoing PCI without prior CABG. In these patients, native-vessel PCI was associated with better outcomes compared with the treatment of vein grafts
    • …
    corecore