576 research outputs found
Recommended from our members
Failure mechanisms of a notched CFRP laminate under multi-axial loading
A quasi-isotropic CFRP laminate, containing a notch or circular hole, is subjected to combined tension and shear, or compression. The measured failure strengths of the specimens are used to construct failure envelopes in stress space. Three competing failure mechanisms are observed, and for each mechanism splitting within the critical ply reduces the stress concentration from the hole or notch: (i) a tension-dominated mode, with laminate failure dictated by tensile failure of the 0° plies, (ii) a shear-dominated mode entailing microbuckling of the -45° plies, and (iii) microbuckling of the 0° plies under remote compression. The net section strength (for all stress states investigated) is greater for specimens with a notch than a circular hole, and this is associated with greater split development in the load-bearing plies. The paper contributes to the literature by reporting sub-critical damage modes and failure envelopes under multi-axial loading for two types of stress raiser.Financial support from Mitsubishi Heavy Industries (MHI) and the US Office of Naval Research are gratefully acknowledged.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.compositesa.2015.06.00
Recommended from our members
Water rise in a cellulose foam: By capillary or diffusional flow?
Critical experiments and predictive models reveal that water rise through a cellulose foam is initially by capillary rise, followed by non-linear diffusion in the presence of trapping sites. Classical ideas on capillary rise are supported by observations that the Washburn law is obeyed up to the Jurin height. However, water rise continues beyond the Jurin height, and this subsequent phase is diffusion-controlled according to the following evidence: the nature of the quantitative dependence of water rise upon time, the insensitivity of water rise to the direction of gravity, and the fact that the water front continues to rise in the foam after the water reservoir has been removed. Water diffusion occurs through the cellulose fibre network, along with trapping/de-trapping at molecular sites. The diffusion equations are solved numerically, and, upon comparing the predictions with the observed response, values are obtained for the diffusion constant and for the ratio of trap density to lattice density. The diffusion model explains why the drying of a damp foam is a slow process: the emptying of filled traps requires diffusion through an adjacent lattice of low water content.ERC H2020 GA-66976
Recommended from our members
Analysis of thermal desorption of hydrogen in metallic alloys
The degree of embrittlement of metallic alloys is sensitive to the concentration of absorbed hydrogen, with hydrogen traps (particularly at grain boundaries) playing an important role. Thermal desorption spectrometry (TDS) is widely used to measure the detrapping and diffusion behaviour of hydrogen in metallic alloys. However, it is problematic to obtain a consistent interpretation of TDS data from the literature, due to the large number of material parameters that influence the measurement, and this results in a wide range of quoted values for trapping parameters such as the number of trap types, trap binding energies and trap densities. In this paper, the governing partial differential equation for hydrogen diffusion with sink and source terms for a single trap is formulated in non-dimensional form, assuming local equilibrium between the hydrogen atoms at the lattice sites and the trap sites. An asymptotic analysis reveals two distinct regimes of diffusion behaviour in TDS tests. Kissinger-type behaviour is expected in a TDS test for low heating rates on an alloy with a low lattice activation energy. Contour maps of maximum hydrogen flux and the corresponding temperature are plotted using axes of trap density and trap binding energy by making use of the full numerical solution (and asymptotic solutions). These maps serve as a useful tool for an accurate and simple determination of the trap binding energy as well as the trap density.ERC H2020 GA66976
Recommended from our members
Perforation of aluminium alloy-CFRP bilayer plates under quasi-static and impact loading
The ability of a metallic surface layer to protect CFRP cross-ply plates against perforation is explored. Aluminium alloy plates (either AA1050A or AA6082-T6) were placed in front of a CFRP layer, and the bilayer was subjected to either quasi-static indentation or to ballistic impact by a spherical projectile, with rigid back support or an edge-clamped boundary condition. The observed perforation mechanism of the CFRP layer is neither influenced by the presence of the metallic layer nor by the choice of loading rate (i.e. quasi-static versus ballistic). In the back-supported condition, the CFRP layers fail by an indirect tension mode that consists of tensile failure of plies in the material directly beneath the indenter or projectile. Alternatively, in the edge-clamped condition, the CFRP layers fail by a shear plugging mechanism. Although the presence of metallic layers does not suppress the shear plugging of the underlying CFRP layer, the loaded area in the CFRP layer increases by the addition of the protective metallic layer, thereby increasing the perforation resistance of the CFRP layer.he research work was sponsored by the Office of Naval Research (ONR), U.S. (Prime Award No. N62909-14-1-N232). The raw composite materials and the autoclave manufacturing process were generously provided by Hexcel Ltd. Finally, the doctoral study of one of the authors (B. Yu) was sponsored by the Croucher Foundation and the Cambridge Commonwealth, European & International Trust
Recommended from our members
Flaw sensitivity in rate-sensitive high strength alloys: an assessment and future research directions
The tensile strength of metallic alloys may be sensitive to the presence of short cracks, particularly in the embrittled state (such as phosphorous or sulphur segregation to the grain boundaries in a high strength steel). Experimental evidence reveals that cleavage accompanied by plasticity can occur when the net section stress is on the order of the yield strength. If the solid were mildly strain hardening but rate-insensitive, then no cleavage would be predicted as the crack tip tensile stress would not attain the local cleavage value. In the present study, the role of rate sensitivity is assessed by placing a tensile cohesive zone at the tip of an edge crack within a visco-plastic solid, and the crack is subjected to remote tension. Thereby, crack initiation and growth is predicted from short flaws in the presence of bulk plasticity. The crack growth resistance curve for long flaws is also determined. Implications of the predictions are discussed for hydrogen embrittlement, and the significance of rate effects in elevating the stress level adjacent to the crack tip is quantified.The authors would like to acknowledge the funding and technical support from BP (ICAM02ex) through the BP International Centre for Advanced Materials (BP-ICAM) which made this research possible. The authors are also grateful for funding in the form of an ERC advanced grant 669764, MULTILAT, and to the US Office of Naval Research N62909-14-1-N232, project managers Dr. David Shifler and Judah Goldwasser
The tensile ductility of cellular Solids: The role of imperfections
© 2016 Metallic and polymeric foams typically possess a low tensile failure strain of a few percent despite the fact that the parent solid can have high ductility (10% or more). This is remarkable as foams are bending-dominated in their structural response, and it is widely accepted that beams have a high ductility in bending compared to a bar in uniaxial tension. Possible reasons for this paradox are explored for a 2D hexagonal honeycomb, and for a so-called ‘lotus cellular material’, made from an elastic-plastic parent solid. Finite element simulations reveal that there is only a small drop in tensile ductility due to the presence of Plateau borders or due to the random misalignment of nodes; a much greater drop in ductility results from missing cell walls (equivalent to misshapen cells) or to the presence of stiff inclusions. The drop in ductility due to inclusions is associated with the multi-axial stress state that exists in their vicinity. This study emphasises the need for a uniform microstructure in order for foams to possess a high macroscopic ductility
Recommended from our members
The dynamic indentation response of sandwich panels with a corrugated or Y-frame core
The dynamic indentation response of stainless steel sandwich panels with a corrugated core or a Y-frame core has been explored using the finite element method to gain insight into the potential of the cores to mitigate against collisions over a wide range of impact velocities pertinent to land and sea-borne vehicles. Back-supported sandwich panels were impacted on the front face by a flat-bottomed or a circular punch at constant velocity ranging from quasi-static loading to 100 m/s. At velocities below 10 m/s the forces on the front and back faces are equal but inertia stabilisation raises the peak load above its quasi-static value. This strength elevation is greater for the corrugated core than for the Y-frame core, and more pronounced for the flat-bottomed punch than for the circular punch. For velocities greater than 10 m/s, the indentation force applied to the front face exceeds the force transmitted to the back face due to plastic-shock effects. In this regime, the force transmitted to the back face by the Y-frame core is markedly less than for the corrugated core, and this brings a performance benefit to the Y-frame, i.e. it protects the underlying structure in the event of a collision.This research was carried out under the project number MC2.06261 in the framework of the Research Program of the Materials innovation institute M2i (www.m2i.nl). The authors are also grateful for the financial support of the Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT).This is the accepted manuscript of a paper publishing in the International Journal of Mechanical Sciences (L St-Pierre, NA Fleck, VS Deshpande, International Journal of Mechanical Sciences 2015, 92, 279–289
Recommended from our members
Growth rate of lithium filaments in ceramic electrolytes
© 2020 Lithium-ion batteries with single ion-conductor ceramic electrolytes short-circuit when subjected to charging currents above a critical current density. Here, we analyse the rate at which a lithium (Li) filament (sometimes referred to as a dendrite) will grow from the cathode towards the anode during charging of such batteries. The filament is modelled as a climbing edge dislocation with its growth occurring by Li+ flux from the electrolyte into the filament tip at constant chemical potential. The growth rate is set by a balance between the reduction of free-energy at the filament tip and energy dissipation associated with the resistance to the flux of Li+ through the filament tip. For charging currents above the critical current density, the filament growth rate increases with decreasing filament tip resistance. Imperfections, such as voids in the Li cathode along the electrolyte/cathode interface, decrease the critical current density but filament growth rates are also lower in these cases as filament growth rates scale with the charging currents. The predictions of the model are in excellent quantitative agreement with measurements and confirm that above the critical current density a filament can traverse the electrolyte in minutes or less. This suggests that initiation of filament growth is the critical step to prevent short-circuiting of the battery
Recommended from our members
The Influence of Strut Waviness on the Tensile Response of Lattice Materials
Abstract
Recent advances in additive manufacturing methods make it possible, for the first time, to manufacture complex micro-architectured solids that achieve desired stress versus strain responses. Here, we report experimental measurements and associated finite element (FE) calculations on the effect of strut shape upon the tensile response of two-dimensional (2D) lattices made from low-carbon steel sheets. Two lattice topologies are considered: (i) a stretching-dominated triangular lattice and (ii) a bending-dominated hexagonal lattice. It is found that strut waviness can enhance the ductility of each lattice, particularly for bending-dominated hexagonal lattices. Manufacturing imperfections such as undercuts have a small effect on the ductility of the lattices but can significantly reduce the ultimate tensile strength. FE simulations provide additional insight into these observations and are used to construct design maps to aid the design of lattices with specified strength and ductility.</jats:p
Regulation of notch sensitivity of lattice materials by strut topology
We propose a local reinforcement technique for lattices in the vicinity of a
stress-raiser such as a notch, in order to elevate the macroscopic strength and
ductility. A spatially non-uniform waviness distribution of sinusoidally-shaped
struts is assumed in the vicinity of the notch, and the sensitivity of
macroscopic tensile response to strut waviness distribution is studied by
finite element analysis. Optimized lattice structures are determined in order
to maximise the macroscopic tensile strength or ductility from these various
strut waviness distributions. Both hexagonal and triangular lattices are
studied as these geometries are representative of bending-dominated and
stretching-dominated lattices, respectively
- …