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Abstract 

The degree of embrittlement of metallic alloys is sensitive to the concentration of absorbed 

hydrogen, with hydrogen traps (particularly at grain boundaries) playing an important role.  

Thermal desorption spectrometry (TDS) is widely used to measure the detrapping and diffusion 

behaviour of hydrogen in metallic alloys. However, it is problematic to obtain a consistent 

interpretation of TDS data from the literature, due to the large number of material parameters 

that influence the measurement, and this results in a wide range of quoted values for trapping 

parameters such as the number of trap types, trap binding energies and trap densities. In this 

paper, the governing partial differential equation for hydrogen diffusion with sink and source 

terms for a single trap is formulated in non-dimensional form, assuming local equilibrium 

between the hydrogen atoms at the lattice sites and the trap sites. An asymptotic analysis reveals 

two distinct regimes of diffusion behaviour in TDS tests. Kissinger-type behaviour is expected 

in a TDS test of low heating rates on an alloy with a low lattice activation energy. Contour 

maps of maximum hydrogen flux and the corresponding temperature are plotted using axes of 

trap density and trap binding energy by making use of the full numerical solution (and 

asymptotic solutions). These maps serve as a useful tool for an accurate and simple 

determination of the trap binding energy as well as the trap density. 

Keywords: Thermal desorption spectrometry, Hydrogen embrittlement, Diffusion, Trap 

binding energy, Trap density.   
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1. Introduction 

The pernicious effects of hydrogen on the mechanical properties of metallic alloys such as 

embrittlement are well known [1,2]. Microstructural defects such as dislocations, grain 

boundaries and vacancies strongly influence the solubility and rate of diffusion of hydrogen 

atoms in a metal-hydrogen system [3]. Thermal desorption spectrometry (TDS) and electro-

permeation (EP) experiments are widely used to measure the characteristics of hydrogen 

diffusion in metals.  Recently, Raina et al. [4] presented an analysis of EP tests and mapped 

out the regimes of behaviour of hydrogen diffusion by both analytical and numerical 

calculations. Their design maps serve as a guideline for a unique determination of trap 

characteristics from EP test data. In the current study, we present the analysis of TDS tests 

based on the same theoretical background [4] in order to provide a unified interpretation of the 

physics of diffusion in both TDS and EP tests. 

TDS tests are generally performed to determine the binding energy of hydrogen trap 

sites in metallic alloys [5]. In brief, the TDS test broadly consists of the following stages: 

charging of a sample with hydrogen via electrochemical or gaseous methods; heating the 

sample at a fixed rate, and detecting the flux of desorbing hydrogen atoms as a function of 

temperature by use of a mass spectrometer. The specimen is heated sufficiently slowly that no 

spatial gradients of temperature exist within it. This is straightforward to achieve as the thermal 

diffusivity of metallic alloys, on the order of 2610 sm / , is much greater than the hydrogen 

lattice diffusion coefficient (on the order of 
10 2 s10 m /

 for ferritic steels). 

Commonly, the evaluation of TDS test data is based on the first order rate theory of 

Kissinger [6]. Choo and Lee [7] used the Kissinger theory to evaluate the binding energy of 

traps in alpha iron from TDS tests, and subsequently this approach has been widely followed. 

However, the applicability of this method to study the diffusion of hydrogen in metals has been 
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questioned due to the following shortcomings. First, the usual derivation of Kissinger’s theory 

neglects diffusion. This implies that TDS data are independent of specimen thickness whereas 

experiments suggest that a thicker specimen leads to slower desorption [8]. Second, lattice 

diffusion of hydrogen is often accompanied by the trapping of hydrogen at microstructural 

defect sites [9] such as dislocations, grain boundaries and carbide particles. Kissinger’s rate 

theory neglects the role of trapping mechanisms. And third, Kissinger’s rate theory considers 

that hydrogen detrapping is the rate limiting step. Typically, the detrapping time is on the order 

of nanoseconds for trap sites of low binding energy, and this does not match the experimental 

diffusion times which are on the order of a few hundred seconds. In this paper, we build on the 

recent analysis of Kirchheim [13] and show that the Kissinger theory is a limiting case of the 

full diffusion equation with trapping and detrapping and is valid only for the restricted test 

regime of TDS tests performed at very slow heating rates on alloys with low lattice activation 

energy. 

An accurate and physically motivated model for the diffusion of hydrogen in metals 

has been formulated by McNabb and Foster [10]. This theory assumes an energy landscape for 

the diffusion of hydrogen in metals of the form shown in Figure 1; McNabb and Foster account 

for the kinetics of trapping and detrapping from a single type of microstructural defect (trap) 

uniformly distributed in the metal. Coupled partial differential equations are derived in [10] for 

the concentrations of lattice and trapped hydrogen in space and time, and these require a 

numerical solution. The McNabb and Foster model requires rate constants for the trap kinetic 

equations, and the experimental determination of these is problematic. Hurley et al. [11] 

performed a parameter sensitivity study to the McNabb and Foster [10] theory, and emphasised 

that the predictions are sensitive to the choice of parameters such as the rate constants and the 

sample thickness. Oriani [12] simplified the analysis by showing that hydrogen atoms at lattice 

and trap sites can be considered to be in local equilibrium due to very fast trapping and 
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detrapping. The local equilibrium condition allows one to replace the differential equation for 

trap kinetics by an algebraic relation between the lattice and trapped hydrogen concentrations. 

Kirchheim [13] validated the local equilibrium assumption [12] by performing Monte-Carlo 

simulations of 8 hydrogen atoms in 8000 octahedral sites of a fcc lattice. He also introduced a 

distribution of trap types in contrast to the single type of trap considered in [10,12].  

Several modified versions of McNabb and Foster [10] theory exist in order to model 

TDS test data. For example, Turnbull et al. [14] extended the McNabb and Foster theory to the 

case of two co-existing traps, deep and shallow traps, to model thermal desorption in metals. 

They showed that Kissinger-type analysis, as used by Choo and Lee [7], is only valid for very 

shallow traps with low concentration of hydrogen. Song et al. [15] assumed a different 

functional form for the trap kinetic equation to that of McNabb and Foster [10]; they performed 

TDS tests on a ferritic steel and showed good agreement of their numerical predictions with 

their data; and Ebihara et al. [16] solved the coupled differential equations of [10] by dropping 

the lattice diffusion term. Subsequently, Ebihara et al. [17] assumed a form of the lattice 

diffusion and local equilibrium relations that is strictly only valid in the limit of low trap 

occupancy. However, they assume trap enthalpies that are associated with a high trap 

occupancy. They compared their numerical predictions with the TDS data and showed poor 

agreement between their model assuming low trap occupancy (their Model II) and the available 

data. We conclude that their study highlights the need for a model that is able to include the 

role of diffusion and trapping/detrapping at high trap occupancies.  

Recently, Kirchheim [18] has solved the diffusion equation [10] with traps in local 

equilibrium [12]. He considered the two cases of partially filled traps or fully saturated traps at 

the initial test temperature. Based on various simplifying assumptions, he obtained analytical 

solutions for the maximum flux and the corresponding temperature in a TDS test.  

The remainder of this paper is organised as follows. In Section 2, we present the 
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governing equations for the diffusion of hydrogen in TDS tests based on [10]; we consider a 

single trap type and assume local equilibrium [12]. The governing PDE is written in non-

dimensional form, and the dominant non-dimensional groups are identified. In Section 3, full 

numerical solutions are presented and contour maps are generated for the maximum flux and 

the corresponding temperature in the parametric space of trap binding energy and trap density. 

These contour maps serve as a useful graphical tool to extract the unknown trap binding energy 

and the trap density from a TDS test data. In Section 4, an asymptotic analytical approach 

reveals two distinct regimes I and II of diffusion behaviour: regime I assumes a low initial 

occupancy of traps whereas regime II assumes a high initial trap occupancy. A comparison of 

analytical and numerical solutions is presented, and the region of the map is identified for which 

Kissinger’s theory is applicable. In Section 5, the effect of an initial rest period on the 

subsequent response to the TDS test is explored; this rest period represents the time at room 

temperature after hydrogen charging of the specimen, but prior to performing the TDS test. It 

is shown that the rest period can be highly significant.  For example, hydrogen can quickly 

diffuse out of shallow traps and be released from the specimen prior to commencement of the 

TDS test.  

2. Theory of diffusion of hydrogen in metals 

2.1. Hydrogen diffusion with source and sink term  

Hydrogen atoms occupy normal interstitial lattice sites (NILS) and additionally can reside at 

trapping sites such as interfaces or dislocations. The total hydrogen concentration C  is the 

sum of lattice hydrogen concentration LC  and trapped hydrogen concentration .TC  Now, 

the lattice concentration ( , )LC x t  in space x  and time t  is dictated by Fickian diffusion over 

the NILS. However, in the presence of traps, hydrogen diffusion is modified by both trapping 
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and detrapping of hydrogen atoms [10]. Mass conservation dictates that the rate of change of 

total concentration equals the net flux of diffusing hydrogen atoms ( )LC x t , and this can be 

written in one-dimensional form as  

 
2

2
L T L

L
C C C

D
t t x

  
  

  
 (1) 

Here, 0 exp( )LD D Q RT    is the lattice diffusion coefficient and is expressed in terms of 

the temperature T , lattice activation energy Q , diffusion pre-exponential factor 0D  and the 

universal gas constant R . Some typical values of the lattice activation energy Q  in metals 

and alloys are listed in Table 1. The full 3D version of (1) follows immediately by re-writing 

2

2
LC

x




 as 

2
LC , but we shall limit our attention to the 1D case. 

It is convenient to introduce the lattice and trap occupancy fractions L  and T , 

respectively, by re-writing the lattice and trap concentrations in the form L L LC N   and 

.T T TC N   Here,   is the number of NILS per lattice atom, LN  is the number of lattice 

atoms per unit volume,   is the number of atoms sites per trap and TN  is the number of trap 

sites per unit volume. We emphasise that 0 1L   and 0 1T  . Using these relations, 

equation (1) can be re-written as  

 

2

2
L T T L

L
L

N
D

t N t x

   



   
   

   
 (2) 

The net rate of trapped hydrogen concentration /T t   is obtained by considering the 

kinetics of trapping and detrapping, using standard rate theory [10]; the theory is summarised 

in the supplementary material, with the key result given by (A.4). 

Oriani [12] assumed that a local equilibrium exists between the hydrogen atoms at the 

lattice sites and the trap sites, and is the limiting case of the trap kinetic equation (A.4) in the 
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limit of a large atomic vibrational frequency. For the practical case where 1L , we have  

 
1

,T
L

L

K

K








  (3) 

where the equilibrium constant K  is given in terms of the trap binding energy H  as  

 exp
H

K
RT

 
  

 
   (4) 

Contours of trap occupancy fraction T  from (3) are shown in Figure 1b for selected values 

of the binding energy H  and for the choice 
510L

 . It shows the following features: (i) 

traps are full ( 1)T   for 40H    kJ/mol at room temperature, and (ii) trap occupancy 

approaches zero ( 0)T   at a sufficiently high temperature T  for any given H : this is 

the underlying principle behind the TDS test. Recall that, in TDS tests, the temperature T  at 

any time t  is defined in terms of the constant heating rate   by  

 0T T t    (5) 

where 0T  is the initial temperature, typically taken as 293 K. The heating rate   is 

sufficiently slow compared to the rate of thermal diffusion that the TDS specimen has a 

spatially uniform temperature ( ).T t   

2.2. Governing diffusion equation with local equilibrium 

Assume local equilibrium between hydrogen atoms at the lattice and the trap sites, as given by 

[3]. Then, upon making use of (3)-(5), the governing PDE for diffusion (2) can be re-cast in 

the simpler form  

 

2

2 2 2 2
1 ,

(1 ) (1 )

L T T L L
L

L L L L

N K N K H
D

t N K N RT K x

     

   

   
   

     

 (6) 

with solution of functional form  
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 0
0 0( ).L L L T Lx t L D N N T H Q               (7) 

The large number of independent parameters can lead to an intricate analysis of the TDS data. 

However, an identification of the governing non-dimensional groups leads to a much simpler 

statement of the governing PDE as follows.  

2.3. Non-dimensional groups and governing PDE  

Consider a one-dimensional specimen of length L  spanning the domain / 2/ 2 x LL   . 

Introduce the following non-dimensional quantities: spatial coordinate /x x L , time 

2
0 /t tD L , heating rate 2

0 0) / ( )( L T D  , trap density ( ) / ( )T LN N N  , temperature 

0 1/T TT t  , lattice activation energy 0/ ( )QQ RT , trap binding energy 

0/ ( )H H RT  , lattice diffusion coefficient 0/ exp( / )L LD D D Q T    and fractional 

lattice occupancy L  such that 0/LL L  . Then, the diffusion equation (2) with sink and 

source term becomes  

0

2

2
,TL L

L

L

N
D

t t x

 



 
 
 
 

  
 

  
            (8) 

and equation (6) reduces to  

 

2

0 2 0 2 22
1 .

(1 ) (1 )

L L L

L L

L

L L

K N HK N
D

t K K xT



 

  

 

   
   

    

   (9) 

where K in (4) can be re-expressed as  exp /K H T  . We note that (9) contains only 3 

non-dimensional material parameters ( )N H Q   and additionally 2 non-dimensional test 

parameters 0( ),L  . In the remainder of our study we shall obtain full numerical solutions and 

approximate asymptotic solutions to (9).   
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2.4. Initial condition and boundary conditions for the TDS test 

Consider a one-dimensional TDS test on a specimen of length L  as shown schematically in 

Figure 2a. Initially, at time 0t  , the specimen is at temperature 0T  with a spatially 

homogeneous distribution of lattice occupancy fraction 0
L L  . Thereafter, the hydrogen 

lattice occupancy 0L   at the boundaries / 2x L   is maintained. In summary, the initial 

condition is ( 0) 1L x t     and the boundary condition reads ( 1 2 0) 0L x t       . 

Now increase the temperature of the specimen at a constant rate  . The lattice 

occupancy L  evolves spatially and temporally as sketched in Figure 2b. In a TDS test, the 

flux of hydrogen atoms ( )J t  diffusing out at the boundaries 2x L    is measured. Write 

( )J t  as the number of hydrogen atoms that exit the specimen per unit surface area, per unit 

time. This flux is related to the concentration gradient at the surface of the sample ( 1/ 2x  ) 

such that 

 

0

.( )
LL LLD N

J t
L x

    
  
   

  (10) 

A schematic of a typical TDS output is shown in Figure 2c. The total mass flow rate of atomic 

hydrogen Hm  from the specimen, of face area 2S, is given by 

H
H

A

2
,

J S M
m

N
          (11)  

where HM  is the mass of one mole of atomic hydrogen and AN  is Avogadro’s constant. Let 

Sm  be the mass of the specimen, then the hydrogen desorption rate per unit mass of the 

specimen is given by 

H H

A

2
,

S

m JM

m N L
         (12)  

where   is the specimen density. Finally, a non-dimensional form of the total flux of 
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desorbing hydrogen atoms is introduced as 

02

2 L

JSt
J

SL N
         (13)  

where 
2

0 0/t L D  is the characteristic lattice diffusion time. Using (10), Eq. (13) reduces to 

 
0

L
L

LJ
x

D





  


   (14) 

In the following sections, we shall denote the maximum flux by maxJ  and the corresponding 

temperature by maxT  

3. Numerical analysis of TDS tests 

The PDE (9) is solved numerically by using the partial differential equation solver pdepe in 

MATLAB1. Consider a material representative of ferritic steel with lattice activation energy 

6.7Q   kJ/mol, diffusion pre-exponential factor 
7 2

0 2 10 m /sD   and lattice density 

28 3  a8.4 toms6 10 mLN     [9], with 1   . Let the initial temperature be 0 293 KT   

such that the non-dimensional lattice activation energy is 2.75Q  . In a typical TDS test, the 

initial concentration of hydrogen after electrochemical or gaseous charging is on the order of 

0.02 wppm [15], implying an initial lattice occupancy fraction of 
0 610L

 . We choose a 

physically meaningful range of trap binding energy 35 10H     , where the lower 

negative limit corresponds to 24.3  kJ/mol and the higher negative limit corresponds to 

85.3  kJ/mol, both at 0 3 K29T  . The trap density TN  is taken to be in the range 

                                                 
1 The pdepe solver is based on the method of lines which converts the given PDE into a system of initial value problems. In 

this method, the spatial derivatives are replaced with algebraic approximations and the remaining time derivatives are solved 

as a system of ordinary differential equations. An automatic time-stepping routine in pdepe solver ensures temporal 

convergence is achieved in each solution step. All simulations used a uniform mesh with element size 0.005e L . The chosen 

element size was sufficient for all the regimes to obtain mesh independent results. 
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2 71(10 )0 LN  , hence 7 210 01 N    [12]. The heating rate is varied from 0.01   to 

1.0 , which corresponds to 0.012   K/s to 0.12  K/s, respectively, for a specimen of 

thickness -35 10 mL    assuming the given values of 0T  and 0 .D   

3.1 Contour maps of maxJ  and maxT  

Consider a typical TDS test, as shown in Figure 2.  In general, the values of lattice activation 

energy Q  and heating rate   are known a priori.  A numerical simulation provides   J t  

for the assumed ( Q , ), and for any given values of  0 , ,L N H  .  The response  J t  is 

converted directly to  J T  by making use of the linear relation 1T t  .  

 We proceed to propose the practical problem:  what is the best procedure for deducing 

the values of  0 , ,L N H   from a given  J T  curve?  The initial lattice occupancy 
0
L  is 

deduced from the area under the  J T  curve of data.  This leaves the trap binding energy 

H  and trap density N  as primary unknowns.  Now make use of multiple numerical 

solutions of the PDE (9) in order to construct contours of maximum flux maxJ , and the 

corresponding temperature maxT , on a map with axes N  and H , for selected values of 

, and for the choice 2.75Q   and 
0 610L

 .  The resulting contours of maxJ   are 

plotted in Figure 3a: we adopt the normalisation maxJ   as numerical experimentation has 

revealed that maxJ  scales almost linearly with  . Several characteristic features emerge 

from this map. First, a zone exists in the lower, right quadrant for which no peak flux is attained.  

The boundary of this zone is given in Figure 3a for selected values of heating rate  .  Second, 

a transition in desorption behaviour occurs at 14H   . Shallow traps exist for 14H   , 



12 

 

and in this regime the normalised peak flux maxJ   is sensitive to the choice of both N  and 

H ; we shall refer to this as regime I. In contrast, deep traps exist for 14H    and, in this 

so-called regime II, maxJ   is sensitive to the choice of N  but not of H . Contours of 

maxT  are shown for selected heating rates   in Figure 3b. The switch in regimes here is 

apparent from a minor slope change at 14H   . Although the contour maps have only been 

presented for the choice 0 610L
 , we find that changing the value of 0

L  by an order of 

magnitude has a negligible effect upon several of the results. For example, if 50 10L
 , the 

transition from regime I to regime II occurs at 12H   .  Also, upon increasing Q , the 

contours of maxJ   change only slightly, whereas the contours of maxT  shift significantly; 

this sensitivity analysis is not shown explicitly for the sake of conciseness.  Additional insight 

is gained into the nature of regimes I and II in the following section by the generation of 

approximate solutions to the governing PDE. 

The contours maps provide us with a graphical tool for the identification of the 

parameters H  and N  from maxJ /  and maxT  TDS data.  But now a word of caution: 

within regime I, the contours of maximum flux and the corresponding temperature are nearly 

parallel.  We conclude that, in regime I, a unique determination of either the trap binding 

energy or the trap density can be achieved provided one of the two quantities is known a priori. 

4. Asymptotic analysis of the TDS test 

The PDE (9) is reduced to an approximate ordinary differential equation, ODE, and associated 

approximate solutions in this section.  We begin by assuming that an approximate, separation 

of variables solution is of the form [18] 

 ( ) ( )cos( )L x t f t x           (15) 
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This satisfies the boundary conditions at 1/ 2x   , and the initial condition is satisfied on the 

mid-plane of the specimen ( 0)x   by taking 0( ) 1.tf     Upon substitution of (15) into 

the PDE (9) and by focussing our attention on 0x  , a non-linear ordinary differential 

equation (ODE) in t  follows immediately as  

2

0 2 2 0 2
1 .

(1 ) (1 )
L

L L

df KN KN H f
D f

dt K f T K f




 

  
    

   

      (16)  

Once we have solved (16) for  f t  back substitution into (15) gives an approximate solution 

for ( )L x t  .   

The non-dimensional flux J  at 1/ 2x   can be expressed in terms of f  as 

0
L LJ D f   and its maximum value as 

0
max maxL LJ D f  .  In a TDS test, the maximum 

flux is attained when / 0J t   .  After substitution of (15) in (14), this condition can be re-

expressed as  

 x2 maat .
df Q

f
dt T

J J
 
  

 
    (17) 

Write maxf f  at maxJ J ; then, upon substituting (17) into (16), we obtain an algebraic 

relation between maxf  and maxT , 

2 2
max0 2 0 2

max max

1
(1 ) (

0
1 )

L

L L

KN KN H
Q D T

K f K f


 

 

  
    

  




  (18) 

where max( )TK K  and max( )L LD D T .  Now proceed to obtain approximate solutions to 

the algebraic equation (18) for maxT  by considering the two physical limits of diffusion in a 

TDS test: the shallow trap regime I of 0 1LK  and the deep trap regime II of 0 1.LK  
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4.1 Shallow traps (Regime I) 

In the shallow trap regime I, we have 0 1LK  at the initial temperature 1.T    Full 

numerical simulations reveal that f increases slightly (to a maximum value of less than 4) before 

decreasing to zero. Hence, we can assume that max
0 1LK f , and equation (18) reduces to 

2
m

2

axmax
( )

ln ln .
H Q K

Q KNTT H Q

  


   
   

  
    

      (19) 

Differentiation of (19) with respect to max1/T  gives  

2
max

max

)
)

ln( / )
(

)( (
.

1/

Q H
H Q

Q KN H

T

QT





  

  
      (20) 

Now, Kissinger’s theory [6] states that the right-hand side of (20) equals H Q  ; the degree 

to which this condition is satisfied is addressed below, after a similar analysis is developed for 

deep traps. 

4.2 Deep traps (Regime II) 

Consider the deep trap limit 
0 1LK  at the initial temperature 1T  , such that 1T   

initially, as demanded by (3). Kirchheim [18] assumed that such traps are half-filled ( 0.5)T   

at maxJ J . Upon adopting this criterion, we assume that max
0 1LK f   in (18) to obtain an 

implicit relation for maxT  in the form 

2
maxm

2

ax

ln l
4

4 ( )
n .

H Q K

Q KT N H QT

  


  

   
   

  
  

   (21) 

Differentiation of (21) with respect to max1/T  yields  

2
max

max

ln( / )
(

4
.

(
)

/ ) 4 ( )1

Q H
H Q

Q KN

T

T H Q





  

  
       (22) 
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Again, it is clear that the right hand side deviates from the value H Q   of Kissinger’s theory 

[6];  the extent of this deviation is explored in the sequel.  The maximum flux maxJ  follows 

immediately from the assumption max
0 1,LK f   to give 

max
max

max

( )
.

( )

LD T
J

K T
        (23) 

4.3 Comparison of numerical and asymptotic solutions of maxT   

A comparison of the asymptotic and numerical predictions are given in Figure 4 for both 

regimes I and II: the asymptotic solutions for maxT  are given by (19) and (21) in regimes I 

and II, respectively. Excellent agreement is noted between numerical and asymptotic solutions.  

4.4 Scope of validity of Kissinger theory in regimes I and II: 

According to the usual Kissinger theory [6], the slope of the 
2
maxln( / )T  versus max1/T  plot 

is of the form 

2
max

max

ln( / )
.

( )1/
H

T
Q

T
  


           (24)  

What is the relationship between this equation and relations (20) and (22) for regimes I and II, 

respectively?  Let  be the fractional deviation of the right-hand side of (20) from the right-

hand side of (24), for regime I, such that  

( .
( )

)
Q H

H Q
Q KN H Q


  

  
      (25) 

This condition can be rearranged to the form 

1
1 ,

1 ( 1)
KN



 

 
   

  
      (26) 

where /H Q    and max( )TK K .  It has the interpretation that, for this value of ,KN  
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Kissinger’s theory conforms to the more accurate solution (20) to within a deviation of ;  the 

deviation is less for greater value of KN .  For convenience of plotting contours of (26), we 

introduce the normalisation 

I ,
1

1
1 ( 1)

KN



 


 
  

  

      (27) 

and note that for I 1  , Kissinger theory conforms to the more accurate solution (20) to 

within a deviation of . The following corollary holds, and is of more practical use. Assume 

that N  is known. Then, the trap binding energy H , as predicted by Kissinger’s theory, is 

accurate to within a small assumed error  provided the TDS test lies within the regime 

I 1  .   

Likewise, write  as the fractional deviation of the right-hand side of (22) from the right-hand 

side of (24), for regime II. Then, the condition for Kissinger’s theory to be valid in regime II 

can be written as II 1   where 

II .

1
1 (

4

1)

NK



 


 
  

  

       (28) 

4.4.1. Map of regimes where Kissinger’s theory holds 

In order to plot the contours of I 1   and II 1   on the regime map with axes of N  and 

H , PDE (9) needs to be solved numerically to first obtain contours of maxT , as done in 

Figure 3b.  A regime map which shows the contours of I 1   and II 1   corresponding 

to the material parameters used in Figure 3b is plotted in Figure 5a for a relative error 0.1

. The role of Q  is also explored, by increasing its value from 2.75 in Figure 5a to 12.75 in 

Figure 5b. For 0 01,    we find that both I 1   and II 1   throughout the map: at this 
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low heating rate, Kissinger’s theory always holds. In contrast, for 0 1   , Kissinger theory 

holds in most of regimes I and II; and for ,1 0    Kissinger theory holds only in a small 

portion of regimes I and II. 

We repeat the analysis for 12.75Q  , which is representative of pure nickel, keeping 

all other parameters same as before. The results are plotted in Figure 5b. A maximum flux is 

always obtained for this case. We note that I 1 in regime I for all assumed heating rates, 

hence, Kissinger’s theory does not hold in regime I. In regime II, contours of II 1   are 

shown for    and  0   1.0 ,1 0.   above which Kissinger’s theory holds (with a relative error of 

0.1  or less). For ,1 0    II 1  in the entire regime II and hence Kissinger’s theory 

does not hold. 

5. Effect of rest period on TDS tests 

TDS tests often involve holding a specimen at room temperature for a rest period restt  between 

charging and testing.  To explore the effect of rest time at room temperature, (5) is modified 

to  

 0 restT T t t     (29) 

where   represents the Macaulay brackets such that x x    if 0x  , otherwise 0.x    

The non-dimensional resting time becomes 2
rest 0 rest( /)t D t L  and the modified non-

dimensional temperature T  reads 

 rest1 .T t t     (30) 

Simulations with PDE (9) are performed at rest period rest [0, 0.25, 0.5    , 1] t   and 0.1   

for regime I ( 8H   ). The remaining parameters are unchanged from those used in Section 

3.1. The trap occupancy fraction T  is plotted in Figure 6a as a function of position x  at the 
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end of the rest period. (The initial trap occupancy fraction 
0
T  is obtained from 

0
L  via (3).) 

The effect of rest period on the flux J  versus T  response is shown in Figure 6b: 

the initial spike due to rapid desorption of lattice hydrogen, and the maximum flux both drop 

with increasing restt .  We observe that a specimen with lower trap binding energy  8H    

is completely depleted of hydrogen in approximately two hours rest time, whereas a specimen 

with higher trap binding energy  20H    takes several weeks to lose its hydrogen content. 

6. Conclusions 

This paper presents a non-dimensional partial differential equation (PDE) with reduced number 

of independent parameters for the analysis of thermal desorption spectrometry (TDS) tests. The 

governing PDE is obtained from the trap kinetics model of McNabb & Foster (1963) by 

incorporating the local equilibrium condition of Oriani (1970). Asymptotic analysis of the 

governing PDE reveals two distinct regimes of diffusion:  regime I is associated with shallow 

traps whereas regime II is associated with deep traps. These are validated by full numerical 

solutions of the governing PDE. Kissinger’s theory is a limiting case of the asymptotic 

solutions and conditions are identified for which it is accurate to within a stated error. Based 

on full numerical solutions of the governing PDE, contour maps of non-dimensional peak flux 

and the corresponding temperature are presented for materials representative of ferritic steels. 

The contour maps serve as a tool for the graphical determination of trap binding energy and 

trap density from given TDS data. In regime I, either trap density or trap binding energy must 

be known for the unique determination of the remaining unknown parameter. In regime II, both 

the binding energy and trap density can be determined. The effect of a rest period at room 

temperature prior to starting the TDS test is presented; significant loss of hydrogen can occur 

during this rest period.  
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Table 1: Data of lattice activation energy Q , diffusion pre-exponential factor 0D  and lattice 

diffusion coefficient 0 exp( / )L DD Q RT   at 3 K29T   for the diffusion of hydrogen 

atoms in metals and alloys.  

   

   

7 8

10 12

7 13

2 2
0Metal/Alloy [kJ/mol] /s] /s]

Pure iron ferritic Ono & Meshii 19

AerMet

[m

100 martensitic Li et al. 20

Pure

[m Reference

6

 n

.7 2 10 1 2 10
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LQ D D
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   

6 13
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38.8 1 13 10 1 32 10
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Pure copper Katz et al. 22

Pure aluminium Zhou et al.10
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SAE 316L austenitic Brass & Chêne 210 1 72 10 4  
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 
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Figures 

Figure 1: (a) A schematic of different energy levels for diffusion of hydrogen in metals. Energy 

levels lower than interstitial lattice activation energy  are referred to as traps, which can be 

classified as shallow or deep. ( 0)H   is the trap binding energy, ( 0)tE   is the trapping 

activation energy and ( 0)dE   is the detrapping activation energy. (b) Contours of trap 

occupancy fraction  using equation (3) are plotted on the axes of trap binding energy H  

and temperature T  at lattice occupancy . 

 

Figure 2: (a) A schematic illustration of initial condition and boundary conditions in a TDS 

test. (b) Transient solution curves of the normalised lattice occupancy fraction 
0/L L   at 

different times 1 2 30 t t t    along the specimen thickness L . (c) A schematic of typical 

TDS output data in the form of hydrogen desorption flux versus temperature. Temperature 

maxT  where maximum flux maxJ  is obtained are marked. 

 

 

 

Q

T
510L



(a) (b) 

(a) (b) (c) 
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Figure 3: Contours of (a) scaled and normalised maximum flux 
4

max10 J   and (b) 

temperature maxT , obtained by numerically solving PDE (9) are plotted on the axes of N  and 

H . Parameters 
0 610L

  and 2 75Q    are used with different  . The curves (dark gray) 

separating the bottom right corner from flux contours represents the region where no peak flux 

is observed. These curves are plotted for each   using the same line style. 

 

Figure 4: Comparison of analytical solutions (19) and (21) of temperature maxT  in regimes I 

and II, respectively, with full numerical solution of (9). Contours are plotted over the 

parametric space of N  and H  for (a) 0.01   and (b) 1.0   at 
0 610L

  and 

2.75Q  . Transition between regimes I and II takes place at 14H    where asymptotic 

solutions do not hold. Regions of no peak flux are also indicated.  

 

(a) (b) 

(a) (b) 

4
max10 J 

maxT
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Figure 5: The regions on regimes map where Kissinger theory holds are shown by plotting 

contours of I 1   (27) and II 1   (28) for (a) 2 75Q    and (b) 12 75Q    at    0.01, 

0.1 and 1.0. Kissinger’s theory holds in regions above I II 1     at given   with a 

relative error 0.1  or less. The region of no peak flux is shown by shaded lines in (a) for 

different  , whereas in (b) there is always a unique maximum flux. 

 

Figure 6: (a) Spatial distribution of the trap occupancy fraction T , normalised by the initial 

value 
0
T , along the specimen thickness  at different rest times restt  for 

regime I with 8H    (b) TDS simulation with varying rest time restt  . Flux J  is plotted 

against the temperature T  in (30) for trap binding energy 8H    The maximum flux and 

the initial spike decreases with increasing rest time. 

11/ 2 / 2x  

(a) (b) 

(a) (b) 


