40 research outputs found
Epigenetic histone acetylation and Bdnf dysregulation in the hippocampus of rats exposed to repeated, low-dose diisopropylfluorophosphate
Aims: Deployment-related exposures to organophosphate (OP) compounds are implicated for Gulf War Illness (GWI) development in First GW veterans. However, reasons for the persistence of GWI are not fully understood. Epigenetic modifications to chromatin are regulatory mechanisms that can adaptively or maladaptively respond to external stimuli. These include DNA methylation and histone acetylation. DNA methylation changes have been reported in GWI but the role of histone acetylation in GWI has been less explored, despite its importance as an epigenetic mechanism for neurological disorders.
Main methods: Male Sprague-Dawley rats were exposed to OP diisopropyl fluorophosphate (DFP, 0.5 mg/kg s.c., 5-d) and 6-m later brains were dissected for hippocampus. Western blotting, activity assays and chromatin immunoprecipitation (ChIP) were utilized for epigenetic analyses. Behavior was assessed using the Forced Swim Test (FST) and the Elevated Plus Maze (EPM).
Key findings: We observed a significant upregulation in HDAC1 protein along with a significant increase in HDAC enzyme activity in the hippocampus of DFP rats. A locus-specific ChIP study revealed decreases in H3K9ac at the brain derived neurotrophic factor (Bdnf) promoter IV coupled with a significant decrease in BDNF protein in DFP rat hippocampus. Treatment with HDAC inhibitor valproic acid reduced HDAC activity and decreased the FST immobility time in DFP rats.
Significance: Our research suggests that epigenetic alterations to histone acetylation pathways and decreased BDNF expression could represent novel mechanisms for GWI symptomatology and may provide new targets for developing effective drugs for GWI treatment
Repeated low-dose organophosphate DFP exposure leads to the development of depression and cognitive impairment in a rat model of Gulf War Illness
Approximately 175,000 to 250,000 of the returning veterans from the 1991 Persian Gulf War exhibit chronic multi-symptom illnesses that includes neurologic co-morbidities such as depression, anxiety and cognitive impairments. Amongst a host of causative factors, exposure to low levels of the nerve agent Sarin has been strongly implicated for expression of Gulf War Illness (GWI). Nerve agents similar to pesticides are organophosphate (OP) compounds. There is evidence from civilian population that exposure to OPs such as in agricultural workers and nerve agents such as the survivors and first-responders of the Tokyo subway Sarin gas attack suffer from chronic neurological problems similar to GWI symptoms. Given this unique chemical profile, OPs are ideal to study the effects of nerve agents and develop models of GWI in civilian laboratories. In this study, we used repeated low-dose exposure to OP agent diisopropyl fluorophosphate (DFP) over a 5-day period to approximate the duration and level of Sarin exposure during the Persian Gulf War. We tested the rats at 3-months post DFP exposure. Using a battery of behavioral assays, we observed the presence of symptoms of chronic depression, anxiety and memory problems as characterized by increased immobility time in the Forced Swim Test, anhedonia in the Sucrose Preference Test, anxiety in the Elevated Plus Maze, and spatial memory impairments in the Object Location Test, respectively. Chronic low dose DFP exposure was also associated with hippocampal neuronal damage as characterized by the presence of Fluoro-Jade staining. Given that OP exposure is considered a leading cause of GWI related morbidities, this animal model will be ideally suited to study underlying molecular mechanisms for the expression of GWI neurological symptoms and identify drugs for the effective treatment of GWIs
Targeting Intracellular Calcium Stores Alleviates Neurological Morbidities in a DFP-Based Rat Model of Gulf War Illness
Gulf War Illness (GWI) is a chronic multi-symptom disorder afflicting the veterans of the First Gulf War, and includes neurological symptoms characterized by depression and memory deficits. Chronic exposure to organophosphates (OP) is considered a leading cause for GWI, yet its pathobiology is not fully understood. We recently observed chronic elevations in neuronal Ca2+ levels ([Ca2+]i) in an OP- diisopropyl fluorophosphate (DFP) based rat model for GWI. This study was aimed at identifying mechanisms underlying elevated [Ca2+]i in this DFP model and investigating whether their therapeutic targeting could improve GWI-like neurological morbidities. Male Sprague-Dawley rats (9-wks) were exposed to DFP (0.5 mg/kg, s.c, 1x-daily for 5-d) and at 3-mos post DFP exposure, behavior was assessed and rats were euthanized for protein estimations and ratiometric Fura-2 [Ca2+]i estimations in acutely dissociated hippocampal neurons. In DFP rats, a sustained elevation in intracellular Ca2+ levels occurred, and pharmacological blockade of Ca2+-induced Ca2+-release mechanisms significantly lowered elevated [Ca2+]i in DFP neurons. Significant reductions in the protein levels of the ryanodine receptor (RyR) stabilizing protein Calstabin2 were also noted. Such a post-translational modification would render RyR leaky resulting in sustained DFP [Ca2+]i elevations. Antagonism of RyR with levetiracetam significantly lower elevated [Ca2+]i in DFP neurons and improved GWI-like behavioral symptoms. Since Ca2+ is a major second messenger molecule, such chronic increases in its levels could underlie pathological synaptic plasticity that expresses itself as GWI morbidities. Our studies show that treatment with drugs targeted at blocking intracellular Ca2+ release could be effective therapies for GWI neurological morbidities
Glutamate Excitotoxicty Activates a Novel Calcium Permeable Ion Channel in Cultured Hippocampal Neurons
Glutamate excitotoxicity is the predominant mechanism implicated in neuronal cell death associated with neurological disorders such as stroke, epilepsy, traumatic brain injury and ALS. Excessive stimulation of NMDA subtypes of glutamate receptors leads to protracted intracellular calcium elevations triggering calcium mediated neurotoxic mechanisms culminating in delayed neuronal cell death. In addition, glutamate excitotoxicity induces a NMDA dependent extended neuronal depolarization mediated by continuous calcium influx that correlates with delayed neuronal death. Attempts to prevent neuronal death by blocking calcium entry into the neurons using calcium channel blockers or NMDA receptor antagonists have failed to provide any beneficial effects in clinical trials. Thus, calcium continues to enter the neurons despite the presence of calcium entry blockers. This phenomenon is known as the calcium paradox of stroke and represents a major problem in developing effective therapies for treatment of stroke. Here employing a combination of patch clamp recordings, fluorescent calcium imaging and neuronal cell death assays in well-characterized in vivo and in vitro models of glutamate excitotoxicity, we report the discovery of a novel calcium permeable ion channel that is activated by excitotoxic glutamate injury and mediates a calcium current that is an early initiating step in causing neuronal death. Blocking this calcium permeable channel with high concentrations of Zn2+ or Gd3+ by removing extracellular calcium for a significant time period after the initial injury is effective in preventing calcium entry, apoptosis and neuronal death, thus accounting for the calcium paradox. This injury induced-calcium permeable channel provides a unique mechanism for calcium entry following stroke and offers a new target for extending the therapeutic window for preventing neuronal death after the initial excitotoxic (stroke) injury
A Novel Constraint Narrowing Technique for MIMO Unstable System
Frequency response data collection can be a boon for modeling of MIMO uncertain plant. System stability can be assessed either by transfer function or by state-space method. Both will arrive at matrix transformation and further decision approach. Both can be considered for diagonalization of matrix. It is a proven fact that when the matrix is diagonalized the elements of the principle diagonal are the Eigen values and these Eigen values are closed loop poles from which stability can be assessed. The feature of such a diagonal matrix is that its principle diagonal elements contain gains of all the feedback paths. Singular value decomposition is used here for diagonalization. Singular value decomposition technique has been demonstrated by many authors but, application of PCA with Euclidian norm has not been paid attention so far. The systems numerical array is fed to a digital processing tool such as Mat lab and SVD-PCA (Singular Value Decomposition- Principal Component Analysis) is applied to determine the reduction of disturbance or noise and to provide minimum sensitivity and error correction. There are Hull, Box and KB consistency narrowing techniques used previously and the idea is extended further and an SVD-PCA-Norm technique which is now referred as LA criteria has been demonstrated here
Association of maternal serum homocysteine level with severity of preeclampsia: a case control study
Background: The objective of the study was to investigate plasma levels of homocysteine in women with preeclampsia and eclampsia, and to assess whether there is any association between hyperhomocysteinemia and the severity of preeclampsia.Methods: In this case control study, 120 women were recruited in the study in which 40 cases of preeclampsia, 40 cases of eclampsia and 40 healthy normotensive women were taken as controls between the study period September 2013 to August 2015. Assessment of homocysteine level was done in cases and controls. Association was studied between maternal homocysteine level and preeclampsia and eclampsia and also with the severity of pre-eclampsia.Results: There was a significant association between pre-eclampsia and eclampsia and maternal serum homocysteine levels (median homocysteine level 16.25moμl/lit with P-value being less than 0.001 for preeclampsia ; median homocysteine level-31.34 μmol/lit with p value being less than 0.001 for eclampsia). There was also a significant association between severity of preeclampsia and maternal homocysteine level (mean serum homocysteine level in nonsevere preeclampsia 14.99±3.47 μmol/lit with p value being 0.35; in severe preeclampsia 19.90±6.17 μmol/lit with p value less than 0.001 and 30.44±4.75 μmol/lit with p value less than 0.001.Conclusions: In the present study a positive association was found between pre-eclampsia and maternal serum homocysteine levels and it was found to be statistically significant. Also the levels were higher as the severity of preeclampsia increased.
Chronic behavioral and cognitive deficits in a rat survival model of paraoxon toxicity
Organophosphate (OP) compounds, including paraoxon (POX), are similar to nerve agents such as sarin. There is a growing concern that OP agents could be weaponized to cause mass civilian causalities. We have developed a rodent survival model of POX toxicity that is being used to evaluate chronic morbidity and to screen for medical countermeasures against severe OP exposure. It is well known that the survivors of nerve gas and chronic OP exposure exhibit neurobehavioral deficits such as mood changes, depression, and memory impairments. In this study we investigated whether animals surviving severe POX exposure exhibited long-term neurological impairments. POX exposure produced overt signs of cholinergic toxicity. Rats were rescued using an optimized atropine, 2-PAM and diazepam therapy. Surviving rats were studied using established behavioral assays for identifying symptoms of depression and memory impairment 3-months after POX exposure. In the forced swim test, POX rats exhibited increased immobility time indicative of a despair-like state. In the sucrose preference test, POX rats consumed significantly less sucrose water indicating anhedonia-like condition. POX rats also displayed increased anxiety as characterized by significantly lower performance in the open arm of the elevated plus maze. Further, when tested with a novel object recognition paradigm, POX rats exhibited a negative discrimination ratio indicative of impaired recognition memory. The results indicate that this model of survival from severe POX exposure can be employed to study some of the molecular bases for OP-induced chronic behavioral and cognitive comorbidities and develop therapies for their treatment
Characterization of spontaneous recurrent epileptiform discharges in hippocampal–entorhinal cortical slices prepared from chronic epileptic animals
AbstractEpilepsy, a common neurological disorder, is characterized by the occurrence of spontaneous recurrent epileptiform discharges (SREDs). Acquired epilepsy is associated with long-term neuronal plasticity changes in the hippocampus resulting in the expression of spontaneous recurrent seizures. The purpose of this study is to evaluate and characterize endogenous epileptiform activity in hippocampal–entorhinal cortical (HEC) slices from epileptic animals. This study employed HEC slices isolated from a large series of control and epileptic animals to evaluate and compare the presence, degree and localization of endogenous SREDs using extracellular and whole cell current clamp recordings. Animals were made epileptic using the pilocarpine model of epilepsy. Extracellular field potentials were recorded simultaneously from areas CA1, CA3, dentate gyrus, and entorhinal cortex and whole cell current clamp recordings were obtained from CA3 neurons. All regions from epileptic HEC slices (n=53) expressed SREDs, with an average frequency of 1.3Hz. In contrast, control slices (n=24) did not manifest any SREDs. Epileptic HEC slices demonstrated slow and fast firing patterns of SREDs. Whole cell current clamp recordings from epileptic HEC slices showed that CA3 neurons exhibited paroxysmal depolarizing shifts associated with these SREDs. To our knowledge this is the first significant demonstration of endogenous SREDs in a large series of HEC slices from epileptic animals in comparison to controls. Epileptiform discharges were found to propagate around hippocampal circuits. HEC slices from epileptic animals that manifest SREDs provide a novel model to study in vitro seizure activity in tissue prepared from epileptic animals
Development of status epilepticus, sustained calcium elevations and neuronal injury in a rat survival model of lethal paraoxon intoxication
Paraoxon (POX) is an active metabolite of organophosphate (OP) pesticide parathion that has been weaponized and used against civilian populations. Exposure to POX produces high mortality. OP poisoning is often associated with chronic neurological disorders. In this study, we optimize a rat survival model of lethal POX exposures in order to mimic both acute and long-term effects of POX intoxication. Male Sprague–Dawley rats injected with POX (4 mg/kg, ice-cold PBS, s.c.) produced a rapid cholinergic crisis that evolved into status epilepticus (SE) and death within 6–8 min. The EEG profile for POX induced SE was characterized and showed clinical and electrographic seizures with 7–10 Hz spike activity. Treatment of 100% lethal POX intoxication with an optimized three drug regimen (atropine, 2 mg/kg, i.p., 2-PAM, 25 mg/kg, i.m. and diazepam, 5 mg/kg, i.p.) promptly stopped SE and reduced acute mortality to 12% and chronic mortality to 18%. This model is ideally suited to test effective countermeasures against lethal POX exposure. Animals that survived the POX SE manifested prolonged elevations in hippocampal [Ca2+]i(Ca2+ plateau) and significant multifocal neuronal injury. POX SE induced Ca2+ plateau had its origin in Ca2+ release from intracellular Ca2+ stores since inhibition of ryanodine/IP3 receptor lowered elevated Ca2+ levels post SE. POX SE induced neuronal injury and alterations in Ca2+ dynamics may underlie some of the long term morbidity associated with OP toxicity
Pharmacological Blockade of the Calcium Plateau Provides Neuroprotection Following Organophosphate Paraoxon Induced Status Epilepticus in Rats
Organophosphate (OP) compounds which include nerve agents and pesticides are considered chemical threat agents. Currently approved antidotes are crucial in limiting OP mediated acute mortality. However, survivors of lethal OP exposure exhibit delayed neuronal injury and chronic behavioral morbidities. In this study, we investigated neuroprotective capabilities of dantrolene and carisbamate in a rat survival model of paraoxon (POX) induced status epilepticus (SE). Significant elevations in hippocampal calcium levels were observed 48-h post POX SE survival, and treatment with dantrolene (10 mg/kg, i.m.) and carisbamate (90 mg/kg, i.m.) lowered these protracted calcium elevations. POX SE induced delayed neuronal injury as characterized by Fluoro Jade C labeling was observed in critical brain areas including the dentate gyrus, parietal cortex, amygdala, and thalamus. Dantrolene and carisbamate treatment provided significant neuroprotection against delayed neuronal damage in these brain regions when administered one-hour after POX-SE. These results indicate that dantrolene or carisbamate could be effective adjuvant therapies to the existing countermeasures to reduce neuronal injury and behavioral morbidities post OP SE survival