26 research outputs found
Delineating the molecular landscape of different histopathological growth patterns in colorectal cancer liver metastases
BackgroundHistopathological growth patterns (HGPs) have shown important prognostic values for patients with colorectal cancer liver metastases, but the potential molecular mechanisms remain largely unknown.MethodsWe performed an exploratory analysis by conducting the RNA sequencing of primary colorectal lesions, colorectal liver metastatic lesions and normal liver tissues.FindingsWe found that desmoplastic HGPs of the metastatic lesions were significantly enriched in EMT, angiogenesis, stroma, and immune signaling pathways, while replacement HGPs were enriched in metabolism, cell cycle, and DNA damage repair pathways. With the exception of immune-related genes, the differentially expressed genes of the two HGPs from colorectal liver metastases were mostly inherited from the primary tumor. Moreover, normal liver tissue in the desmoplastic HGP subgroup was markedly enriched in the fibrinous inflammation pathway.ConclusionsWe surmised that HGPs are observable morphological changes resulting from the regulation of molecular expressions, which is the combined effect of the heterogeneity and remodeling of primary tumors seeds and liver soils
Non-Uniform Temperature Fields and Effects of Steel Structures: Review and Outlook
Due to the dynamic coupling effects of solar radiation, longwave radiation, convective heat transfer, shadows, and other factors, the temperature field and effect of steel structures are significantly non-uniform, differing from traditional concepts that regard the temperature variation of steel structures as a slow and uniform progress. This difference can hinder the correct understanding of the thermal behavior of steel structures and ignore some potential safety hazards. This paper provides a review of the studies for the non-uniform temperature field and effect of steel structures, and presents some outlooks on future developments on the basis of the current research situation. A summary of research on the temperature field and effect of space structures, bridges and radio telescopes initially establishes the basic cognitive framework for this field. In addition, then, the basic principles of the numerical simulation of temperature fields are introduced through heat transfer mechanism, and the experimental test methods of temperature and its effects are described based on typical test cases. Finally, with a view to the future, some suggestions and opinions are provided in consideration of deficiencies in the current research status. This paper hopes to provide some valuable references for future research in this field through research summary, method introduction and outlook
Scheme Exploration and Performance Analysis of 800-Meter Superlarge Span Structure
Superlarge span structure is one of the important trends for future building development. Under the background of the 800-meter superlarge span dome project proposed by China Construction Group, this paper focuses on the structural optimization and performance analysis of this superlarge span structure. The previous ideas of the superdome and the maximum span of existed spatial structures are reviewed, and some structural form selection principles are put forward which lay foundation for structural selection. The applicability of high-strength steel and aluminum alloy is also discussed. It is demonstrated that the high-strength steel and aluminum alloy contribute little to structural comprehensive performances. Then, considering the effects of grid division, members topological relation, and surface shape, six kinds of rigid systems are contrastively studied to determine the optimal scheme. The structural performances along with the increasing span are explored in detail. To further reduce the structural weight and improve mechanical performance, a new composite scheme and the cable-stayed megastructure are proposed and studied. The research methods and performance analysis results can provide significant references for the following research on the superlarge span structure
Mechanical properties of a new fully prefabricated staggered flip-down slab
Prefabricated slab has been widely used in the global construction industry due to energy saving, environmental protection, and good economic advantages. In this paper, a new type of fully prefabricated staggered flip-down slab without cast-in-situ operation has been proposed. First, the experiments were carried out on the new slab. The structural performance of the new slab was compared with the cast-in-situ slabs and composite slabs of the same specification. The experimental results showed that the ultimate bearing capacity of the new slab meets the requirements for practical utilization. On this basis, an additional CFRP sheet could be pasted on the bottom initial seam between prefabricated slabs to enhance the integrity and prevent cracks. Then, the whole loading process of the slab was simulated, and the results were consistent with the experimental results. Finally, through experiments and parametric analysis, recommendations for improvement were put forward to enhance the mechanical properties of this kind of slab
Numerical approach for simulating the tensioning process of complex prestressed cable-net structures
The stability of cable-net structures depends on the prestress of the system. Due to the large displacement and mutual effect of the cables, it is difficult to simulate the tensioning process and control the forming accuracy. The Backward Algorithm (BA) has been used to simulate the tensioning process. The traditional BA involves complicated and tedious matrix operations. In this paper, a new numerical method based on the Vector Form Intrinsic Finite Element (VFIFE) method is proposed for BA application. Moreover, the tensioning sequence of a complex cable-net structure is introduced. Subsequently, a new approach for BA application in the simulation of the tensioning process is presented, which combines the VFIFE approach and the notion of form-finding. Finally, a numerical example is simulated in detail and the results of different tensioning stages are analyzed to verify the feasibility of the proposed approach. This study provides a significant reference for improving the construction control and forming accuracy of complex prestressed cable-net structures
A novel tracking algorithm via feature points matching.
Visual target tracking is a primary task in many computer vision applications and has been widely studied in recent years. Among all the tracking methods, the mean shift algorithm has attracted extraordinary interest and been well developed in the past decade due to its excellent performance. However, it is still challenging for the color histogram based algorithms to deal with the complex target tracking. Therefore, the algorithms based on other distinguishing features are highly required. In this paper, we propose a novel target tracking algorithm based on mean shift theory, in which a new type of image feature is introduced and utilized to find the corresponding region between the neighbor frames. The target histogram is created by clustering the features obtained in the extraction strategy. Then, the mean shift process is adopted to calculate the target location iteratively. Experimental results demonstrate that the proposed algorithm can deal with the challenging tracking situations such as: partial occlusion, illumination change, scale variations, object rotation and complex background clutter. Meanwhile, it outperforms several state-of-the-art methods
Atomic-scale dynamics calculation of the formation of a flyer due to the shock wave induced by multi-pulse laser
Laser-driven flyer technology is a new dynamic high-pressure loading approach for accelerating metal as a high-speed flyer. The flyer velocity can be effectively increased using a multi-pulse laser. However, the effect of interactions between the multi-pulse laser and the metal foil on flyer formation is not clear. Based on atomic-scale dynamics combined with the two-temperature model, this paper models for the first time the entire process of using a multi-pulse laser to form a high-speed flyer. It was found that the velocity, thickness, and integrity of the flyer are different for multi-pulse than for single pulse. For a fixed number of pulses, the velocity and integrity of the flyer can be increased by appropriately increasing the delay time. However, if the delay time is too long, the shock wave generated by the second pulse will cause the flyer to suffer from secondary shock loading, and the integrity of the flyer is destroyed. If the delay time between each laser beam is fixed, the energy of each beam and the resulting pressure of the shock wave can be reduced by increasing the number of pulses. In this case, the flyer does not undergo strong impact loading and the integrity of the flyer is improved. The shock wave caused by laser pulse can result in the crystal transformation from FCC to BCC or HCP, which enhances the formation of flyer. The results of this study are important for understanding the dynamic response of a metal subjected to a multi-pulse laser and for developing laser-driven flyer technology.Published versionThis work was supported by the National Natural Science Foundation of China (Grant No. 11472050) and by the Opening Fund of the State Key Laboratory of Explosion Science and Technology in China (Grant No. KFJJ20-04M)
Average running time.
<p>(Code: M—Matlab; MC—Matlab with C/C++ MEX files)</p
Target Histograms of the example in Fig. 3.
<p>Target Histograms of the example in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0116315#pone.0116315.g003" target="_blank">Fig. 3</a>.</p
The calculation process of the convolved orientation maps in DAISY.
<p>The calculation process of the convolved orientation maps in DAISY.</p