25 research outputs found

    SoK: Differential Privacies

    Get PDF
    Shortly after it was first introduced in 2006, differential privacy became the flagship data privacy definition. Since then, numerous variants and extensions were proposed to adapt it to different scenarios and attacker models. In this work, we propose a systematic taxonomy of these variants and extensions. We list all data privacy definitions based on differential privacy, and partition them into seven categories, depending on which aspect of the original definition is modified. These categories act like dimensions: variants from the same category cannot be combined, but variants from different categories can be combined to form new definitions. We also establish a partial ordering of relative strength between these notions by summarizing existing results. Furthermore, we list which of these definitions satisfy some desirable properties, like composition, post-processing, and convexity by either providing a novel proof or collecting existing ones.Comment: This is the full version of the SoK paper with the same title, accepted at PETS (Privacy Enhancing Technologies Symposium) 202

    Anytime Algorithms for Non-Ending Computations

    Get PDF
    A program which eventually stops but does not halt “too quickly” halts at a time which is algorithmically compressible. This result — originally proved in [4] — is proved in a more general setting. Following Manin [11] we convert the result into an anytime algorithm for the halting problem and we show that the stopping time (cut-off temporal bound) cannot be significantly improved

    DP-SIPS: A simpler, more scalable mechanism for differentially private partition selection

    Full text link
    Partition selection, or set union, is an important primitive in differentially private mechanism design: in a database where each user contributes a list of items, the goal is to publish as many of these items as possible under differential privacy. In this work, we present a novel mechanism for differentially private partition selection. This mechanism, which we call DP-SIPS, is very simple: it consists of iterating the naive algorithm over the data set multiple times, removing the released partitions from the data set while increasing the privacy budget at each step. This approach preserves the scalability benefits of the naive mechanism, yet its utility compares favorably to more complex approaches developed in prior work

    SoK: Differential privacies

    Get PDF
    Shortly after it was first introduced in 2006, differential privacy became the flagship data privacy definition. Since then, numerous variants and extensions were proposed to adapt it to different scenarios and attacker models. In this work, we propose a systematic taxonomy of these variants and extensions. We list all data privacy definitions based on differential privacy, and partition them into seven categories, depending on which aspect of the original definition is modified
    corecore