568 research outputs found
Arithmetic area for m planar Brownian paths
We pursue the analysis made in [1] on the arithmetic area enclosed by m
closed Brownian paths. We pay a particular attention to the random variable
S{n1,n2, ...,n} (m) which is the arithmetic area of the set of points, also
called winding sectors, enclosed n1 times by path 1, n2 times by path 2, ...,nm
times by path m. Various results are obtained in the asymptotic limit
m->infinity. A key observation is that, since the paths are independent, one
can use in the m paths case the SLE information, valid in the 1-path case, on
the 0-winding sectors arithmetic area.Comment: 12 pages, 2 figure
Antibacterial Activity of Long-Chain Polyunsaturated Fatty Acids against Propionibacterium acnes and Staphylococcus aureus
New compounds are needed to treat acne and superficial infections caused by Propionibacterium acnes and Staphylococcus aureus due to the reduced effectiveness of agents used at present. Long-chain polyunsaturated fatty acids (LC-PUFAs) are attracting attention as potential new topical treatments for Gram-positive infections due to their antimicrobial potency and anti-inflammatory properties. This present study aimed to investigate the antimicrobial effects of six LC-PUFAs against P. acnes and S. aureus to evaluate their potential to treat infections caused by these pathogens. Minimum inhibitory concentrations were determined against P. acnes and S. aureus, and the LC-PUFAs were found to inhibit bacterial growth at 32-1024 mg/L. Generally, P. acnes was more susceptible to the growth inhibitory actions of LC-PUFAs, but these compounds were bactericidal only for S. aureus. This is the first report of antibacterial activity attributed to 15-hydroxyeicosapentaenoic acid (15-OHEPA) and 15-hydroxyeicosatrienoic acid (HETrE), while the anti-P. acnes effects of the six LC-PUFAs used herein are novel observations. During exposure to the LC-PUFAs, S. aureus cells were killed within 15-30 min. Checkerboard assays demonstrated that the LC-PUFAs did not antagonise the antimicrobial potency of clinical agents used presently against P. acnes and S. aureus. However, importantly, synergistic interactions against S. aureus were detected for combinations of benzoyl peroxide with 15-OHEPA, dihomo-γ-linolenic acid (DGLA) and HETrE; and neomycin with 15-OHEPA, DGLA, eicosapentaenoic acid, γ-linolenic acid and HETrE. In conclusion, LC-PUFAs warrant further evaluation as possible new agents to treat skin infections caused by P. acnes and S. aureus, especially in synergistic combinations with antimicrobial agents already used clinically
Paving the way to acceptance of Galleria mellonella as a new model insect
First paragraph: The larva of the greater wax moth Galleria mellonella is an alternative host used commonly in studies of microbial infection and innate immunity. Indeed, this insect host is often used when quantifying or comparing the virulence of bacterial and fungal pathogens of vertebrates and it has been used successfully to establish the importance of microbial virulence factors and to determine the relative virulence of different isolates of the same species. The recent popularity of G. mellonella as an alternative host system stems from numerous benefits, including the ability to perform experiments at a range of temperatures including human body core temperature; the technical simplicity of establishing infections by various routes such as through feeding, topical application or injection; the convenient size of the insect, which means it is large enough to permit simple injection of inoculums or chemicals but small enough to require little space in the laboratory; the ability to assess the efficacy and toxicity of antimicrobial therapies; and the ease and reliability with which these insects can be sourced in their final instar stage from commercial suppliers. It has also found approval amongst many researchers due to the favourable reproducibility between experiments in the same laboratory. Nevertheless, relatively small variations in susceptibility to infection can occur between batches of larvae from the same supplier and such variation probably arises from factors such as age, size and nutritional status on receipt; conditions encountered during transit to the laboratory; and the presence of any underlying natural infections. These issues are largely uncontrollable when purchasing larvae from a commercial supplier but on reaching the laboratory standardised pre-experimentation storage conditions can improve reproducibility between studies. In recent years the Kavanagh group have raised awareness for the role of a number of variables during storage that require consideration to ensure optimal reproducibility when experimenting with this insect, and factors influencing G. mellonella susceptibility to infections include physical stress, incubation temperature and access to food. In this edition of Virulence, the Kavanagh group report that larvae become increasingly susceptible to infection by pathogens as laboratory storage time increases, highlighting the need to consider this parameter when using the G. mellonella model. Browne et al. elaborate further in the study and relate this observation to a reduction in the total abundance of haemocytes that function in immune defence against pathogens and changes in the relative flux of metabolic pathways. Interestingly, the number of haemocytes after 3 weeks of incubation was approximately half that compared to the population at one week, while qualitative changes in the relative abundance of the various types of haemocytes were also reported. Both these factors probably contribute to reduced immune capacity and thus increased susceptibility to infection.Output Type: Editoria
Wax moth larva (Galleria mellonella): An in vivo model for assessing the efficacy of antistaphylococcal agents
Objectives - To investigate whether the wax moth larva, Galleria mellonella, is a suitable host for assessing the in vivo efficacy of antistaphylococcal agents against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) infections. Methods - Wax moth larvae were infected with increasing doses of S. aureus to investigate the effect of inoculum size on larval survival. In addition, infected wax moth larvae were treated with daptomycin, penicillin or vancomycin to examine whether these agents were effective against S. aureus and MRSA infections in vivo. Results - Increasing inoculum doses of live S. aureus cells resulted in greater larval mortality, but heat-killed bacteria and cell-free culture filtrates had no detrimental effects on survival. Larval mortality rate also depended on the post-inoculation incubation temperature. After larvae were infected with S. aureus, larval survival was enhanced by administering the antistaphylococcal antibiotics daptomycin or vancomycin. Larval survival increased with increasing doses of the antibiotics. Moreover, penicillin improved survival of larvae infected with a penicillin-susceptible methicillin-susceptible S. aureus (MSSA) strain, but it was ineffective at similar doses in larvae infected with MRSA (penicillin resistant). Daptomycin and vancomycin were also effective when administered to the larvae prior to infection with bacteria. Conclusions - This is the first report to demonstrate that antibiotics are effective in the wax moth larva model for the treatment of infections caused by Gram-positive bacteria. The new wax moth larva model is a useful preliminary model for assessing the in vivo efficacy of candidate antistaphylococcal agents before proceeding to mammalian studies, which may reduce animal experimentation and expense
Statistics of reduced words in locally free and braid groups: Abstract studies and application to ballistic growth model
We study numerically and analytically the average length of reduced
(primitive) words in so-called locally free and braid groups. We consider the
situations when the letters in the initial words are drawn either without or
with correlations. In the latter case we show that the average length of the
reduced word can be increased or lowered depending on the type of correlation.
The ideas developed are used for analytical computation of the average number
of peaks of the surface appearing in some specific ballistic growth modelComment: 29 pages, LaTeX, 7 separated Postscript figures (available on
request), submitted to J. Phys. (A): Math. Ge
Antibacterial Effect of Eicosapentaenoic Acid against Bacillus cereus and Staphylococcus aureus: Killing Kinetics, Selection for Resistance, and Potential Cellular Target
Polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA; C20:5n-3), are attracting interest as possible new topical antibacterial agents, particularly due to their potency and perceived safety. However, relatively little is known of the underlying mechanism of antibacterial action of EPA or whether bacteria can develop resistance quickly against this or similar compounds. Therefore, the aim of this present study was to determine the mechanism of antibacterial action of EPA and investigate whether bacteria could develop reduced susceptibility to this fatty acid upon repeated exposure. Against two common Gram-positive human pathogens, Bacillus cereus and Staphylococcus aureus, EPA inhibited bacterial growth with a minimum inhibitory concentration of 64 mg/L, while minimum bactericidal concentrations were 64 mg/L and 128 mg/L for B. cereus and S. aureus, respectively. Both species were killed completely in EPA at 128 mg/L within 15 min at 37 °C, while reduced bacterial viability was associated with increased release of 260-nm-absorbing material from the bacterial cells. Taken together, these observations suggest that EPA likely kills B. cereus and S. aureus by disrupting the cell membrane, ultimately leading to cell lysis. Serial passage of the strains in the presence of sub-inhibitory concentrations of EPA did not lead to the emergence or selection of strains with reduced susceptibility to EPA during 13 passages. This present study provides data that may support the development of EPA and other fatty acids as antibacterial agents for cosmetic and pharmaceutical applications
Localization effects in a periodic quantum graph with magnetic field and spin-orbit interaction
A general technique for the study of embedded quantum graphs with magnetic
fields and spin-orbit interaction is presented. The analysis is used to
understand the contribution of Rashba constant to the extreme localization
induced by magnetic field in the T3 shaped quantum graph. We show that this
effect is destroyed at generic values of the Rashba constant. On the other
hand, for certain combinations of the Rashba constant and the magnetic
parameters another series of infinitely degenerate eigenvalues appears.Comment: 25 pages, typos corrected, references extende
Scars on quantum networks ignore the Lyapunov exponent
We show that enhanced wavefunction localization due to the presence of short
unstable orbits and strong scarring can rely on completely different
mechanisms. Specifically we find that in quantum networks the shortest and most
stable orbits do not support visible scars, although they are responsible for
enhanced localization in the majority of the eigenstates. Scarring orbits are
selected by a criterion which does not involve the classical Lyapunov exponent.
We obtain predictions for the energies of visible scars and the distributions
of scarring strengths and inverse participation ratios.Comment: 5 pages, 2 figure
Algebraic and arithmetic area for planar Brownian paths
The leading and next to leading terms of the average arithmetic area enclosed by independent closed Brownian planar paths, with
a given length and starting from and ending at the same point, is
calculated. The leading term is found to be
and the -winding sector arithmetic area inside the paths is subleading
in the asymptotic regime. A closed form expression for the algebraic area
distribution is also obtained and discussed.Comment: 8 pages, 2 figure
- …