60 research outputs found

    An improved method for undertaking limiting dilution assays for in vitro cloning of Plasmodium falciparum parasites

    Get PDF
    Abstract. Background: Obtaining single parasite clones is required for many techniques in malaria research. Cloning by limiting dilution using microscopy-based assessment for parasite growth is an arduous and labor-intensive process. An alternative method for the detection of parasite growth in limiting dilution assays is using a commercial ELISA histidine-rich protein II (HRP2) detection kit. Methods. Detection of parasite growth was undertaken using HRP2 ELISA and compared to thick film microscopy. An HRP2 protein standard was used to determine the detection threshold of the HRP2 ELISA assay, and a HRP2 release model was used to extrapolate the amount of parasite growth required for a positive result. Results: The HRP2 ELISA was more sensitive than microscopy for detecting parasite growth. The minimum level of HRP2 protein detection of the ELISA was 0.11ng/ml. Modeling of HRP2 release determined that 2,116 parasites are required to complete a full erythrocytic cycle to produce sufficient HRP2 to be detected by the ELISA. Under standard culture conditions this number of parasites is likely to be reached between 8 to 14 days of culture. Conclusions: This method provides an accurate and simple way for the detection of parasite growth in limiting dilution assays, reducing time and resources required in traditional methods. Furthermore the method uses spent culture media instead of the parasite-infected red blood cells, enabling culture to continue

    Paracheck-Pf® accuracy and recently treated Plasmodium falciparum infections: is there a risk of over-diagnosis?

    Get PDF
    BACKGROUND: An assessment of the accuracy of Paracheck Pf, a malaria rapid diagnostic test (RDT) detecting histidine rich protein 2 was undertaken amongst children aged 6-59 months in eastern Democratic Republic of Congo. METHODS: This RDT assessment occurred in conjunction with an ACT efficacy trial. Febrile children were simultaneously screened with both RDT and high quality microscopy and those meeting inclusion criteria were followed for 35 days. RESULTS: 358 febrile children were screened with 180 children recruited for five weeks follow-up. On screening, the RDT accurately diagnosed all 235 true malaria cases, indicating 100% RDT sensitivity. Of the 123 negative slides, the RDT gave 59 false-positive results, indicating 52.0% (64/123) RDT specificity. During follow-up after treatment with an artemisinin-based combination therapy, 98.2% (110/112), 94.6% (106/112), 92.0% (103/112) and 73.5% (50/68) of effectively treated children were still false-positive by RDT at days 14, 21, 28 and 35, respectively. CONCLUSION: Results show that though the use of Paracheck-Pf is as sensitive as microscopy in detecting true malaria cases, a low specificity did present a high frequency of false-positive RDT results. What's more, a duration of RDT false-positivity was found that significantly surpassed the 'fortnight' after effective treatment reported by its manufacturer. Though further research is needed in assessing RDT accuracy, study results showing the presence of frequent false positivity should be taken into consideration to avoid clinicians inappropriately focusing on malaria, not identifying the true cause of illness, and providing unnecessary treatment

    PfHRP2 and PfLDH antigen detection for monitoring the efficacy of artemisinin-based combination therapy (ACT) in the treatment of uncomplicated falciparum malaria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An assessment of the accuracy of two malaria rapid diagnostic tests (RDT) for the detection of <it>Plasmodium falciparum </it>histidine-rich protein 2 (<it>Pf</it>HRP2) or <it>Pf </it>lactate dehydrogenase (<it>Pf</it>LDH) was undertaken in children aged between six and 59 months included in an anti-malarial efficacy study in Benin.</p> <p>Methods</p> <p>In Allada (Benin), 205 children aged 6-59 months with falciparum malaria received either artesunate-amodiaquine (ASAQ), artemether-lumefantrine (AL), or sulphadoxine-pyrimethamine (SP). Children included in the study were simultaneously followed by both RDT and high-quality microscopy for up to 42 days.</p> <p>Results</p> <p>At the time of inclusion, <it>Pf</it>HRP2-based tests were positive in 203 children (99%) and <it>Pf</it>LDH-based tests were positive in 204 (99.5%). During follow-up, independent of the treatment received, only 17.3% (28/162) of children effectively cured were negative with the <it>Pf</it>HRP2 RDT at day 3, with a gradual increase in specificity until day 42. The specificity of antigen detection with the <it>Pf</it>LDH test was 87% (141/162) on day 3, and between 92% and 100% on days 7 to 42. A statistical difference was observed between the persistence of <it>Pf</it>HRP2 and <it>Pf</it>LDH antigenaemia during follow-up in children treated with artemisinin-based combination therapy (ACT) but not with SP.</p> <p>Conclusion</p> <p>Although both RDTs are as sensitive as microscopy in detecting true malaria cases, the <it>Pf</it>HRP2 RDT had very low specificity during follow-up until day 28. On the other hand, the <it>Pf</it>LDH test could be used to detect failures and, therefore, to assess anti-malarial efficacy.</p

    Immunoassays Based on Penicillium marneffei Mp1p Derived from Pichia pastoris Expression System for Diagnosis of Penicilliosis

    Get PDF
    BACKGROUND: Penicillium marneffei is a dimorphic fungus endemic in Southeast Asia. It can cause fatal penicilliosis in humans, particularly in HIV-infected people. Diagnosis of this infection is difficult because its clinical manifestations are not distinctive. Specialized laboratory tests are necessary to establish a definitive diagnosis for successful management. We have demonstrated previously that a cell wall mannoprotein Mp1p, abundant in P. marneffei, is a potential biomarker for diagnosis of P. marneffei infections. In the present study, we describe immunoassays based on Mp1p derived from the yeast Pichia pastoris expression system. METHODOLOGY/PRINCIPAL FINDINGS: We generated monoclonal antibodies (MAbs) and rabbit polyclonal antibodies (PAbs) against Mp1p expressed in P. pastoris. Subsequently, we developed two Mp1p antigen capture ELISAs which employed MAbs for both the capture and detecting antibodies (MAb-MAb pair) or PAbs and MAbs as the capture and detecting antibodies (PAbs-MAb pair) respectively. The two Mp1p antigen ELISAs detected Mp1p specifically in cultures of P. marneffei yeast phase at 37-40 degrees C and had no cross-reaction with other tested pathogenic fungi. The sensitivities and specificities of the two antigen assays were found to be 55% (11/20) and 99.6% (538/540) for MAb-MAb Mp1p ELISA, and 75% (15/20) and 99.4% (537/540) for PAbs-MAb Mp1p ELISA performed using 20 sera with culture-confirmed penicilliosis, and 540 control sera from 15 other mycosis patients and 525 healthy donors. Meanwhile, we also developed an anti-Mp1p IgG antibody ELISA with an evaluated sensitivity of 30% (6/20) and a specificity of 98.5% (532/540) using the same sera. Furthermore, combining the results of Mp1p antigen and antibody detection improved the sensitivity of diagnosis to 100% (20/20). CONCLUSIONS/SIGNIFICANCE: Simultaneous detection of antigen and antibody using the immunoassays based on Mp1p derived from P. pastoris greatly improves detection sensitivity. The procedures should be useful for the routine diagnosis of penicilliosis.published_or_final_versio

    Operational accuracy and comparative persistent antigenicity of HRP2 rapid diagnostic tests for Plasmodium falciparum malaria in a hyperendemic region of Uganda

    Get PDF
    BACKGROUND: Parasite-based diagnosis of malaria by microscopy requires laboratory skills that are generally unavailable at peripheral health facilities. Rapid diagnostic tests (RDTs) require less expertise, but accuracy under operational conditions has not been fully evaluated in Uganda. There are also concerns about RDTs that use the antigen histidine-rich protein 2 (HRP2) to detect Plasmodium falciparum, because this antigen can persist after effective treatment, giving false positive test results in the absence of infection. An assessment of the accuracy of Malaria Pf immuno-chromatographic test (ICT) and description of persistent antigenicity of HRP2 RDTs was undertaken in a hyperendemic area of Uganda. METHODS: Using a cross-sectional design, a total of 357 febrile patients of all ages were tested using ICT, and compared to microscopy as the gold standard reference. Two independent RDT readings were used to assess accuracy and inter-observer reliability. With a longitudinal design to describe persistent antigenicity of ICT and Paracheck, 224 children aged 6-59 months were followed up at 7-day intervals until the HRP2 antigens where undetectable by the RDTs. RESULTS: Of the 357 patients tested during the cross-sectional component, 40% (139) had positive blood smears for asexual forms of P. falciparum. ICT had an overall sensitivity of 98%, a specificity of 72%, a negative predictive value (NPV) of 98% and a positive predictive value (PPV) of 69%. ICT showed a high inter-observer reliability under operational conditions, with 95% of readings having assigned the same results (kappa statistics 0.921, p 50,000/microl, the mean duration of persistent antigenicity was 37 days compared to 26 days for parasitaemia less than 1,000/microl (log rank 21.9, p < 0.001). CONCLUSION: ICT is an accurate and appropriate test for operational use as a diagnostic tool where microscopy is unavailable. However, persistent antigenicity reduces the accuracy of this and other HRP2-based RDTs. The low specificity continues to be of concern, especially in children below five years of age. These pose limitations that need consideration, such as their use for diagnosis of patients returning with symptoms within two to four weeks of treatment. Good clinical skills are essential to interpret test results

    Laboratory demonstration of a prozone-like effect in HRP2-detecting malaria rapid diagnostic tests: implications for clinical management

    Get PDF
    Background: Malaria rapid diagnostic tests (RDTs) are now widely used for prompt on-site diagnosis in remote endemic areas where reliable microscopy is absent. Aberrant results, whereby negative test results occur at high parasite densities, have been variously reported for over a decade and have led to questions regarding the reliability of the tests in clinical use. Methods. In the first trial, serial dilutions of recombinant HRP2 antigen were tested on an HRP2-detectiing RDT. In a second trial, serial dilutions of culture-derived Plasmodium falciparum parasites were tested against three HRP2-detecting RDTs. Results: A prozone-like effect occurred in RDTs at a high concentration of the target antigen, histidine-rich protein-2 (above 15,000 ng/ml), a level that corresponds to more than 312000 parasites per L. Similar results were noted on three RDT products using dilutions of cultured parasites up to a parasite density of 25%. While reduced line intensity was observed, no false negative results occurred. Conclusions: These results suggest that false-negative malaria RDT results will rarely occur due to a prozone-like effect in high-density infections, and other causes are more likely. However, RDT line intensity is poorly indicative of parasite density in high-density infections and RDTs should, therefore, not be considered quantitative. Immediate management of suspected severe malaria should rely on clinical assessment or microscopy. Evaluation against high concentrations of antigen should be considered in malaria RDT product development and lot-release testing, to ensure that very weak or false negative results will not occur at antigen concentrations that might be seen clinically

    Transcription and Expression of Plasmodium falciparum Histidine-Rich Proteins in Different Stages and Strains: Implications for Rapid Diagnostic Tests

    Get PDF
    Background: Although rapid diagnostic tests (RDTs) for Plasmodium falciparum infection that target histidine rich protein 2 (PfHRP2) are generally sensitive, their performance has been reported to be variable. One possible explanation for variable test performance is differences in expression level of PfHRP in different parasite isolates. Methods: Total RNA and protein were extracted from synchronised cultures of 7 P. falciparum lines over 5 time points of the life cycle, and from synchronised ring stages of 10 falciparum lines. Using quantitative real-time polymerase chain reaction, Western blot analysis and ELISA we investigated variations in the transcription and protein levels of pfhrp2, pfhrp3 and PfHRP respectively in the different parasite lines, over the parasite intraerythrocytic life cycle. Results: Transcription of pfhrp2 and pfhrp3 in different parasite lines over the parasite life cycle was observed to vary relative to the control parasite K1. In some parasite lines very low transcription of these genes was observed. The peak transcription was observed in ring-stage parasites. Pfhrp2 transcription was observed to be consistently higher than pfhrp3 transcription within parasite lines. The intraerythrocytic lifecycle stage at which the peak level of protein was present varied across strains. Total protein levels were more constant relative to total mRNA transcription, however a maximum 24 fold difference in expression at ring-stage parasites relative to the K1 strain was observed. Conclusions: The levels of transcription of pfhrp2 and pfhrp3, and protein expression of PfHRP varied between different P. falciparum strains. This variation may impact on the detection sensitivity of PfHRP2-detecting RDTs

    Cerebrospinal fluid Plasmodium falciparum histidine-rich protein-2 in pediatric cerebral malaria

    Get PDF
    Abstract Background Cerebral malaria (CM) causes a rapidly developing coma, and remains a major contributor to morbidity and mortality in malaria-endemic regions. This study sought to determine the relationship between cerebrospinal fluid (CSF) Plasmodium falciparum histidine rich protein-2 (PfHRP-2) and clinical, laboratory and radiographic features in a cohort of children with retinopathy-positive CM. Methods Patients included in the study were admitted (2009–2013) to the Pediatric Research Ward (Queen Elizabeth Central Hospital, Blantyre, Malawi) meeting World Health Organization criteria for CM with findings of malarial retinopathy. Enzyme-linked immunosorbent assay was used to determine plasma and CSF PfHRP-2 levels. Wilcoxon rank-sum tests and multivariable logistic regression analysis assessed the association of clinical and radiographic characteristics with the primary outcome of death during hospitalization. Results In this cohort of 94 patients, median age was 44 (interquartile range 29–62) months, 53 (56.4%) patients were male, 6 (7%) were HIV-infected, and 10 (11%) died during hospitalization. Elevated concentrations of plasma lactate (p = 0.005) and CSF PfHRP-2 (p = 0.04) were significantly associated with death. On multivariable analysis, higher PfHRP-2 in the CSF was associated with death (odds ratio 9.00, 95% confidence interval 1.44–56.42) while plasma PfHRP-2 was not (odds ratio 2.05, 95% confidence interval 0.45–9.35). Conclusions Elevation of CSF, but not plasma PfHRP-2, is associated with death in this paediatric CM cohort. PfHRP-2 egress into the CSF may represent alteration of blood brain barrier permeability related to the sequestration of parasitized erythrocytes in the cerebral microvasculature

    Emerging Diagnostic Platforms for Malaria

    No full text
    • …
    corecore