7 research outputs found

    A case study on sepsis using PubMed and Deep Learning for ontology learning

    Get PDF
    We investigate the application of distributional semantics models for facilitating unsupervised extraction of biomedical terms from unannotated corpora.Term extraction is used as the first step of an ontology learning process that aims to (semi-)automatic annotation of biomedical concepts and relations from more than 300K PubMed titles and abstracts. We experimented with both traditional distributional semantics methods such as Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) as well as the neural language models CBOW and Skip-gram from Deep Learning. The evaluation conducted concentrates on sepsis, a major life-threatening condition, and shows that Deep Learning models outperform LSA and LDA with much higher precision

    MetaMap versus BERT models with explainable active learning: ontology-based experiments with prior knowledge for COVID-19

    Get PDF
    Emergence of the Coronavirus 2019 Disease has highlighted further the need for timely support for clinicians as they manage severely ill patients. We combine Semantic Web technologies with Deep Learning for Natural Language Processing with the aim of converting human-readable best evi-dence/practice for COVID-19 into that which is computer-interpretable. We present the results of experiments with 1212 clinical ideas (medical terms and expressions) from two UK national healthcare services specialty guides for COVID-19 and three versions of two BMJ Best Practice documents for COVID-19. The paper seeks to recognise and categorise clinical ideas, performing a Named Entity Recognition (NER) task, with an ontology providing extra terms as context and describing the intended meaning of categories understandable by clinicians. The paper investigates: 1) the performance of classical NER using MetaMap versus NER with fine-tuned BERT models; 2) the integration of both NER approaches using a lightweight ontology developed in close collaboration with senior doctors; and 3) the easy interpretation by junior doctors of the main classes from the ontology once populated with NER results. We report the NER performance and the observed agreement for human audits

    MetaMap versus BERT models with explainable active learning: ontology-based experiments with prior knowledge for COVID-19

    Get PDF
    Emergence of the Coronavirus 2019 Disease has highlighted further the need for timely support for clinicians as they manage severely ill patients. We combine Semantic Web technologies with Deep Learning for Natural Language Processing with the aim of converting human-readable best evi-dence/practice for COVID-19 into that which is computer-interpretable. We present the results of experiments with 1212 clinical ideas (medical terms and expressions) from two UK national healthcare services specialty guides for COVID-19 and three versions of two BMJ Best Practice documents for COVID-19. The paper seeks to recognise and categorise clinical ideas, performing a Named Entity Recognition (NER) task, with an ontology providing extra terms as context and describing the intended meaning of categories understandable by clinicians. The paper investigates: 1) the performance of classical NER using MetaMap versus NER with fine-tuned BERT models; 2) the integration of both NER approaches using a lightweight ontology developed in close collaboration with senior doctors; and 3) the easy interpretation by junior doctors of the main classes from the ontology once populated with NER results. We report the NER performance and the observed agreement for human audits
    corecore