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Abstract. We investigate the application of distributional semantics models for 
facilitating unsupervised extraction of biomedical terms from unannotated corpora.  
Term extraction is used as the first step of an ontology learning process that aims 
to (semi-)automatic annotation of biomedical concepts and relations from more 
than 300K PubMed titles and abstracts.  We experimented with both traditional 
distributional semantics methods such as Latent Semantic Analysis (LSA) and 
Latent Dirichlet Allocation (LDA) as well as the neural language models CBOW 
and Skip-gram from Deep Learning. The evaluation conducted concentrates on 
sepsis, a major life-threatening condition, and shows that Deep Learning models 
outperform LSA and LDA with much higher precision. 
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1. Introduction 

Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host 
response to a new infection [1]. Severe sepsis occurs when complicated with organ 
dysfunction, and may progress to septic shock [1]. Severe sepsis and septic shock affect 
millions of people worldwide, and their incidence is increasing [2]. According to NHS 
England: “sepsis now claims more lives than lung cancer, the second biggest cause of 
death after cardiovascular disease” [3]. Severe sepsis is regarded as “a common, 
deadly, and costly complication in cancer patients” [4].  

The Surviving Sepsis Campaign (SSC), established in 2002, updates consensus 
definitions and evidence-based guidelines for management of severe sepsis and septic 
shock. Evidence from the literature improves understanding of sepsis, leading to better 
patient care. However, the size and rate of growth of PubMed – the largest biomedical 
resource – is a challenge for term extraction and knowledge representation. 

Ontology learning from text aims to “turn facts and patterns from an ever growing 
body of information into shareable high-level constructs” [5]. This paper investigates 
how the traditional distributional semantics methods, Latent Semantic Analysis (LSA) 
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[6] and Latent Dirichlet Allocation (LDA) [7], as well as the neural language models 
CBOW (Continuous Bag-of-Words) and Skip-gram of Mikolov et al. [8] from Deep 
Learning can facilitate ontology learning from an unannotated biomedical corpus. 

2. Methods 

In distributional semantic models (DSMs), the semantics of terms within a domain are 
determined empirically [9]. LSA is spatially motivated, while LDA is a probabilistic 
method. LSA and LDA have high computational and storage cost associated with 
building or modifying the model. However, CBOW and Skip-gram from Deep 
Learning make it feasible to obtain word embeddings (i.e. distributed word 
representations) from corpora of billions of words. Using similarity measures (e.g. 
cosine value for CBOW and Skip-gram) we can obtain the n top-ranked candidate 
terms for a query term (e.g. sepsis). Hence we can quantify empirically how closely 
related are two terms from a DSM. 

This study takes advantage of the UMLS (Unified Medical Language System) 
Metathesaurus from the U.S. National Library of Medicine that contains more than 
three million biomedical concepts. Each UMLS concept has a unique identifier (a.k.a. 
CUI). UMLS Metathesaurus concepts are grouped into UMLS Semantic Types, where 
semantic types can also be merged into semantic groups [10]. 

We use OWL-DL [11] to formally represent concept names, concept expressions, 
and terminological axioms. We started by creating programmatically a small ontology 
that contains mostly the UMLS Semantic Types and Groups. This ontology together 
with lemon (Lexicon Model for Ontologies) [12] is key to the move from candidate 
terms from DSMs to UMLS Metathesaurus concepts with known synonyms and 
relationships. In this study, the concept Lexicon from lemon represents a vocabulary for 
a DSM, while the concept Lexical entry represents a single term (one or more words) in 
the vocabulary/lexicon of the DSM. We also link the concept Lexical sense from lemon 
with the UMLS Metathesaurus concept, an OWL class we created that can have as a 
subclass any of the more than 3 million UMLS Metathesaurus concepts. 

A vocabulary/lexicon from DSMs contains lexical entries that are: concepts, 
phraseological expressions (typically combination of concepts), or spurious terms 
without a true biomedical meaning. UMLS MetaMap [13] can indicate which terms 
from the lexicon are UMLS Metathesaurus concepts and their UMLS Semantic Type(s).  

Experimental setup – We downloaded the MEDLINE/PubMed baseline files for 
2015 and also the update files up to 8th June 2016. Applying the PubMed Systematic 
Reviews filter [14], a subset of 301,202 PubMed publications (title and abstract) with 
date of publication from 2000 to 2016 was obtained. We performed two experiments 
using LSA, LDA, CBOW and Skip-gram: Experiment I – the pre-processing performed 
preserves capitalisation and numbers in the text; and Experiment II – after the pre-
processing that preserves capitalisation and numbers in the text, Part-Of-Speech (POS) 
tagging and chunking was performed. Chunking labels segments of a sentence with 
syntactic constituents – e.g. noun phrase (NP) and verb phrase (VP). For the 
experiments reported here, we used gensim [15] and word2vec [16]. 

Domain expert evaluation – three medical consultants (rater A, B, and C) 
assessed the relevance of the terms in pairs (query term and candidate term) using a 
Likert-type (categorical) scale taken from [17]. According to this scale, a candidate 
term can be: not at all relevant (marked as 0); a little relevant (marked as 1); quite a bit 
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relevant (marked as 2); and very much relevant (marked as 3). Simple guidelines were 
given to the domain experts. They consist of: a) the Likert-type (categorical) scale; and 
b) a few examples illustrating pairs of query term-candidate term annotated with 
different scores. The inter-annotator agreement is calculated using two well-known 
measures: weighted Cohen’s Kappa and Fleiss. Using few raters and simplistic 
annotation guidelines, low inter-annotator agreement and some difficulties are expected 
before arriving at consistent figures [18]. 

Task-based evaluation – the automatically extracted ontology – called here 
PubMed Ontology LEarning Ontology for Sepsis (POLEOS) – refers to the OWL-DL 
ontology built programmatically out of the n top-ranked candidate terms obtained from 
each model (i.e. LSA, LDA, CBOW, and Skip-gram) in Experiment I and II. POLEOS 
reuses the UMLS Semantic Types and Groups formalised in OWL. Two annotation 
properties were introduced in POLEOS to capture: a) the relevance of a candidate term, 
which comes from a voting system that considers equally the assessment made by each 
human rater per candidate term; and b) to what extent the candidate term was 
recognised by UMLS MetaMap. Using conventional measures in information retrieval 
[5], the suitability of the different models to find relevant terms (concepts or 
phraseological expressions) for sepsis is assessed. The numbers needed to calculate 
precision are obtained by executing SPARQL [19] queries over POLEOS. We can also 
query POLEOS with SPARQL to determine: the number of unique UMLS concepts 
needed to provide the biomedical meaning for the candidate terms; and how many 
candidate terms can be assigned to each UMLS Semantic type or group based on the 
Lexical sense assigned.  

3. Results 

Computational resources and execution times – The DSMs are generated using a 
Supermicro with 256GB RAM and two CPUs Intel Xeon E5-2630 v4 at 2.20GHz. The 
time to obtain a DSM goes from less than 1 hour for CBOW (the quickest) to more 
than 23 hours for LDA (the slowest). Using a MacBook Pro Retina (2.8 GHz Intel Core 
i7 with 16GB RAM) and Jena ARQ [20] as the SPARQL query engine, the mean time 
for executing a SPARQL query over POLEOS three times was less than 2 seconds. 

Distributional Semantics: LSA, LDA, CBOW, and Skip-gram –The query term 
was “sepsis” for all models. For LDA in Experiment II, two topics for sepsis were 
identified, and thus, LDA in Experiment II has almost double the candidate terms than 
the other models. 

Domain expert evaluation – Rater C did not score any candidate term with 0 (not 
at all relevant); while rater A scored 52 of the candidate terms with 0. Based on this 
finding, we decided to merge the four scores into two categories: more relevant with 
score 3 or 2; and less relevant with score 1 or 0. These two categories allow arrival at 
consistent figures, where the weighted Cohen’s Kappa between two consultants is: 0.53 
for rater A and B; 0.61 for rater A and C; and 0.55 for rater B and C. Fleiss Kappa is 
0.56 for the three raters. In Figure 1, each column corresponds to a model with its name 
at the top. A column has up to three colours: dark grey for most relevant (score 3) 
candidate terms agreed by all three raters, grey for more relevant (score 3 or 2) agreed 
by at least two raters, and white less relevant (score 1 or 0) candidate terms agreed by 
at least two raters. 

M. Arguello Casteleiro et al. / A Case Study on Sepsis Using PubMed and Deep Learning518



 

 

 
Figure 1. Agreed assessment by medical consultants for candidate terms, where SG = Skip-gram 

 
Task-based evaluation – POLEOS contains a total of 3276 axioms, and its 

Description Logic expressivity is ALEHI(D). From the two experiments and the 
different models, a total of 157 candidate terms related to sepsis were obtained. The 
same candidate term may appear in more than one model; 130 candidate terms are 
unique: 71 are UMLS concepts, 50 are phraseological expressions (typically a 
combination of UMLS concepts), and 9 were unrecognised by UMLS MetaMap.  Only 
7 of the 9 unrecognised are truly spurious terms (i.e. terms that do not have a true 
biomedical meaning); the other two (i.e. suPAR and IgGAM) are acronyms that could 
be mapped to UMLS concepts. A total of 169 unique UMLS concepts are represented 
as subclasses of the concept Lexical sense from lemon. In other words, 169 UMLS 
concepts are needed to provide the biomedical meaning of the 157 candidate terms 
obtained. Three UMLS Semantic groups stand out with more candidate terms (concepts 
or phraseological expressions): Disorders (DISO) with 61 candidate terms, Concepts & 
Ideas (CONC) with 47 candidate terms, and Living Beings (LIVB) with 24 candidate 
terms. Table 1 shows the precision for each model in Experiment I and II. 
 
Table 1. Task-based precision calculated as tp/(tp+fp) per model and experiment, where tp stands for the 
number of true positives agreed by at least two raters and fp stands for the number of false positives agreed 
by at least two raters. 

Model Experiment I Experiment II 
      LSA - 26% 

LDA 58% 36% 
CBOW 

Skip-gram 
90% 
90% 

85% 
70% 

4. Discussion and Conclusion 

Healthcare data is multi-source, high volume and multi-modal. Identifying patterns in 
such data requires scalability while accommodating structured and unstructured data. 
Unlike conventional datasets, healthcare data is often incomplete and noisy; in turn, 
unlike standard analytics, neural language models process raw natural language data to 
associate terms with vectors of real valued features and place semantically related 
terms close together in the vector space [21]. The learned “high level” semantic 
features of the word embeddings are usually not explicitly present in input such as 
biomedical literature. 

Hu et al. [22] recently reported improvements in the word embeddings generated 
by introducing POS tagging information into a neural network similar to CBOW. 
However, from the precision obtain for Experiment II (see Table 1) it is difficult to 
derive a real benefit from the chunking (VP and NP) performed. 
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Although several parameter settings were tried, it is plausible that other options 
may have improved the precision for LSA and LDA. However, a higher performance 
for CBOW and Skip-gram when compared with traditional DSMs such as LDA is 
aligned with the results reported in the literature for other studies, e.g. [23]. 

Using sepsis as the query term, we have shown how to anchor plain text candidate 
terms from DSMs into shareable high-level constructs, i.e. UMLS concepts represented 
in OWL that can be easily queried with SPARQL based on Semantic types and 
Semantic Groups. The evaluation performed indicates high precision for the neural 
language models, which in turn hints at the plausible acquisition of relevant medical 
concepts for sepsis. Hence, this paper illustrates how CBOW and Skip-gram can be 
used to aid ontology learning tasks for sepsis, a major healthcare problem, using 
unannotated PubMed Systematic Reviews citations (titles and abstracts) as a corpus.  
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