116 research outputs found

    CPST GTA Overview

    Get PDF
    No abstract availabl

    NASA Ares I Launch Vehicle Upper Stage Reaction Control System (ReCS) Cold Flow Development Test Overview

    Get PDF
    NASA s Ares I launch vehicle, consisting of a five segment solid rocket booster first stage and a liquid bi-propellant J2-X engine Upper Stage, is the vehicle that s been chosen to launch the Orion Crew Module, which will return humans to the Moon, Mars, and beyond. After First Stage booster separation, the Reaction Control System (ReCS), a monopropellant hydrazine system, will provide the Upper Stage element with three degrees of freedom control as needed. This paper provides an overview of the system level development testing that has taken place on the Ares I launch vehicle Upper Stage ReCS. The ReCS System Development Test Article (SDTA) was built as a flight representative water flow test article whose primary test objective was to obtain fluid system performance data to evaluate the integrate system performance characteristics and verify analytical models. Water is the industry standard for cold flow testing of hydrazine systems, because the densities are very close and the speeds of sound are well characterized. The completion of this development level test program was considered necessary to support the ReCS Critical Design Review. This paper will address the design approach taken in building the test article, the objectives of the test program, types of testing completed, general results, the ability of the program to meet the test objectives, and lessons learne

    Resource Prospector Propulsion Cold Flow Test

    Get PDF
    For the past year, NASA Marshall Space Flight Center and Johnson Space Center have been working on a government version of a lunar lander design for the Resource Prospector Mission. A propulsion cold flow test system, representing an early flight design of the propulsion system, has been fabricated. The primary objective of the cold flow test is to simulate the Resource Prospector propulsion system operation through water flow testing and obtain data for anchoring analytical models. This effort will also provide an opportunity to develop a propulsion system mockup to examine hardware integration to a flight structure. This paper will report the work progress of the propulsion cold flow test system development and test preparation. At the time this paper is written, the initial waterhammer testing is underway. The initial assessment of the test data suggests that the results are as expected and have a similar trend with the pretest prediction. The test results will be reported in a future conference

    Search for long-lived heavy neutral leptons decaying in the CMS muon detectors in proton-proton collisions at s= \sqrt{s}= 13 TeV

    No full text
    A search for heavy neutral leptons (HNLs) decaying in the CMS muon system is presented. A data sample is used corresponding to an integrated luminosity of 138 fb1 ^{-1} of proton-proton collisions at s= \sqrt{s}= 13 TeV, recorded at the CERN LHC in 2016-2018. Decay products of long-lived HNLs could interact with the shielding materials in the CMS muon system and create hadronic and electromagnetic showers detected in the muon chambers. This distinctive signature provides a unique handle to search for HNLs with masses below 4 GeV and proper decay lengths of the order of meters. The signature is sensitive to HNL couplings to all three generations of leptons. Candidate events are required to contain a prompt electron or muon originating from a vertex on the beam axis and a displaced shower in the muon chambers. No significant deviations from the standard model background expectation are observed. In the electron (muon) channel, the most stringent limits to date are set for HNLs in the mass range of 2.1-3.0 (1.9-3.3) GeV, reaching mixing matrix element squared values as low as 8.6 (4.6) × \times 106^{-6} .A search for heavy neutral leptons (HNLs) decaying in the CMS muon system is presented. A data sample is used corresponding to an integrated luminosity of 138 fb1^{-1} of proton-proton collisions at s\sqrt{s} = 13 TeV, recorded at the CERN LHC in 2016-2018. Decay products of long-lived HNLs could interact with the shielding materials in the CMS muon system and create hadronic and electromagnetic showers detected in the muon chambers. This distinctive signature provides a unique handle to search for HNLs with masses below 4 GeV and proper decay lengths of the order of meters. The signature is sensitive to HNL couplings to all three generations of leptons. Candidate events are required to contain a prompt electron or muon originating from a vertex on the beam axis and a displaced shower in the muon chambers. No significant deviations from the standard model background expectation are observed. In the electron (muon) channel, the most stringent limits to date are set for HNLs in the mass range of 2.1-3.0 (1.9-3.3) GeV, reaching mixing matrix element squared values as low as 8.6 (4.6) ×\times 106^{-6}

    Search for long-lived heavy neutral leptons with lepton flavour conserving or violating decays to a jet and a charged lepton

    No full text
    International audienceA search for long-lived heavy neutral leptons (HNLs) is presented, which considers the hadronic final state and coupling scenarios involving all three lepton generations in the 2-20 GeV HNL mass range for the first time. Events comprising two leptons (electrons or muons) and jets are analyzed in a data sample of proton-proton collisions, recorded with the CMS experiment at the CERN LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb1^{-1}. A novel jet tagger, based on a deep neural network, has been developed to identify jets from an HNL decay using various features of the jet and its constituent particles. The network output can be used as a powerful discriminating tool to probe a broad range of HNL lifetimes and masses. Contributions from background processes are determined from data. No excess of events in data over the expected background is observed. Upper limits on the HNL production cross section are derived as functions of the HNL mass and the three coupling strengths VNV_{\ell\mathrm{N}} to each lepton generation \ell and presented as exclusion limits in the coupling-mass plane, as lower limits on the HNL lifetime, and on the HNL mass. In this search, the most stringent limit on the coupling strength is obtained for pure muon coupling scenarios; values of VμN2>\lvert V_{\mu\mathrm{N}}\rvert^{2}\gt 5 (4)×\times107^{-7} are excluded for Dirac (Majorana) HNLs with a mass of 10 GeV at a confidence level of 95% that correspond to proper decay lengths of 17 (10) mm

    A search for bottom-type vector-like quark pair production in dileptonic and fully hadronic final states in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search is described for the production of a pair of bottom-type vector-like quarks (B VLQs) with mass greater than 1000 GeV. Each B VLQ decays into a b quark and a Higgs boson, a b quark and a Z boson, or a t quark and a W boson. This analysis considers both fully hadronic final states and those containing a charged lepton pair from a Z boson decay. The products of the H toto bb boson decay and of the hadronic Z or W boson decays can be resolved as two distinct jets or merged into a single jet, so the final states are classified by the number of reconstructed jets. The analysis uses data corresponding to an integrated luminosity of 138 fb1^{-1} collected in proton-proton collisions at s\sqrt{s} = 13 TeV with the CMS detector at the LHC from 2016 to 2018. No excess over the expected background is observed. Lower limits are set on the B VLQ mass at 95% confidence level. These depend on the B VLQ branching fractions and are 1570 and 1540 GeV for 100% B \to bH and 100% B \to bZ, respectively. In most cases, the mass limits obtained exceed previous limits by at least 100 GeV

    Search for long-lived heavy neutral leptons decaying in the CMS muon detectors in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search for heavy neutral leptons (HNLs) decaying in the CMS muon system is presented. A data sample is used corresponding to an integrated luminosity of 138 fb1^{-1} of proton-proton collisions at s\sqrt{s} = 13 TeV, recorded at the CERN LHC in 2016-2018. Decay products of long-lived HNLs could interact with the shielding materials in the CMS muon system and create hadronic and electromagnetic showers detected in the muon chambers. This distinctive signature provides a unique handle to search for HNLs with masses below 4 GeV and proper decay lengths of the order of meters. The signature is sensitive to HNL couplings to all three generations of leptons. Candidate events are required to contain a prompt electron or muon originating from a vertex on the beam axis and a displaced shower in the muon chambers. No significant deviations from the standard model background expectation are observed. In the electron (muon) channel, the most stringent limits to date are set for HNLs in the mass range of 2.1-3.0 (1.9-3.3) GeV, reaching mixing matrix element squared values as low as 8.6 (4.6) ×\times 106^{-6}

    Search for pair production of scalar and vector leptoquarks decaying to muons and bottom quarks in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceA search for pair production of scalar and vector leptoquarks (LQs) each decaying to a muon and a bottom quark is performed using proton-proton collision data collected at s\sqrt{s} = 13 TeV with the CMS detector at the CERN LHC, corresponding to an integrated luminosity of 138 fb1^{-1}. No excess above standard model expectation is observed. Scalar (vector) LQs with masses less than 1810 (2120) GeV are excluded at 95% confidence level, assuming a 100% branching fraction of the LQ decaying to a muon and a bottom quark. These limits represent the most stringent to date

    Combination of measurements of the top quark mass from data collected by the ATLAS and CMS experiments at s=7\sqrt{s}=7 and 8 TeV

    No full text
    International audienceA combination of fifteen top quark mass measurements performed by the ATLAS and CMS experiments at the LHC is presented. The data sets used correspond to an integrated luminosity of up to 5 and 201^{-1} of proton-proton collisions at center-of-mass energies of 7 and 8 TeV, respectively. The combination includes measurements in top quark pair events that exploit both the semileptonic and hadronic decays of the top quark, and a measurement using events enriched in single top quark production via the electroweak tt-channel. The combination accounts for the correlations between measurements and achieves an improvement in the total uncertainty of 31% relative to the most precise input measurement. The result is mtm_\mathrm{t} = 172.52 ±\pm 0.14 (stat) ±\pm 0.30 (syst) GeV, with a total uncertainty of 0.33 GeV

    Nonresonant central exclusive production of charged-hadron pairs in proton-proton collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe central exclusive production of charged-hadron pairs in pp collisions at a centre-of-mass energy of 13\TeV is examined, based on data collected in a special high-β\beta^* run of the LHC. The nonresonant continuum processes are studied with the invariant mass of the centrally produced two-pion system in the resonance-free region, mπ+πm_{\pi^+\pi^-}<\lt 0.7 GeV or mπ+πm_{\pi^+\pi^-}>\gt 1.8 GeV. Differential cross sections as functions of the azimuthal angle between the surviving protons, squared exchanged four-momenta, and mπ+πm_{\pi^+\pi^-} are measured in a wide region of scattered proton transverse momenta, between 0.2 and 0.8 GeV, and for pion rapidities y\lvert y\rvert<\lt 2. A rich structure of interactions related to double-pomeron exchange is observed. A parabolic minimum in the distribution of the two-proton azimuthal angle is observed for the first time. It can be interpreted as an effect of additional pomeron exchanges between the protons from the interference between the bare and the rescattered amplitudes. After model tuning, various physical quantities are determined that are related to the pomeron cross section, proton-pomeron and meson-pomeron form factors, pomeron trajectory and intercept, and coefficients of diffractive eigenstates of the proton
    corecore