102 research outputs found

    Tissue specific analysis reveals a differential organization and regulation of both ethylene biosynthesis and E8 during climacteric ripening of tomato

    Get PDF
    Background: Solanum lycopersicum or tomato is extensively studied with respect to the ethylene metabolism during climacteric ripening, focusing almost exclusively on fruit pericarp. In this work the ethylene biosynthesis pathway was examined in all major tomato fruit tissues: pericarp, septa, columella, placenta, locular gel and seeds. The tissue specific ethylene production rate was measured throughout fruit development, climacteric ripening and postharvest storage. All ethylene intermediate metabolites (1-aminocyclopropane-1-carboxylic acid (ACC), malonyl-ACC (MACC) and S-adenosyl-L-methionine (SAM)) and enzyme activities (ACC-oxidase (ACO) and ACC-synthase (ACS)) were assessed. Results: All tissues showed a similar climacteric pattern in ethylene productions, but with a different amplitude. Profound differences were found between tissue types at the metabolic and enzymatic level. The pericarp tissue produced the highest amount of ethylene, but showed only a low ACC content and limited ACS activity, while the locular gel accumulated a lot of ACC, MACC and SAM and showed only limited ACO and ACS activity. Central tissues (septa, columella and placenta) showed a strong accumulation of ACC and MACC. These differences indicate that the ethylene biosynthesis pathway is organized and regulated in a tissue specific way. The possible role of inter- and intra-tissue transport is discussed to explain these discrepancies. Furthermore, the antagonistic relation between ACO and E8, an ethylene biosynthesis inhibiting protein, was shown to be tissue specific and developmentally regulated. In addition, ethylene inhibition by E8 is not achieved by a direct interaction between ACO and E8, as previously suggested in literature. Conclusions: The Ethylene biosynthesis pathway and E8 show a tissue specific and developmental differentiation throughout tomato fruit development and ripening

    A novel strategy for the comprehensive analysis of the biomolecular composition of isolated plasma membranes

    Get PDF
    A methodology for rapid, high-purity isolation of plasma membranes using superparamagnetic nanoparticles is described. The method is illustrated with high-resolution proteomic, glycomic and lipidomic analyses of presenilin-deficient cells

    Ceramide Analog [\u3csup\u3e18\u3c/sup\u3eF]F-HPA-12 Detects Sphingolipid Disbalance in the Brain of Alzheimer’s Disease Transgenic Mice by Functioning as a Metabolic Probe

    Get PDF
    The metabolism of ceramides is deregulated in the brain of Alzheimer’s disease (AD) patients and is associated with apolipoprotein (APO) APOE4 and amyloid-β pathology. However, how the ceramide metabolism changes over time in AD, in vivo, remains unknown. Distribution and metabolism of [18F]F-HPA-12, a radio-fluorinated version of the ceramide analog N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl) dodecanamide, was investigated in the brain of AD transgenic mouse models (FAD) on an APOE4 or APOE3 genetic background, by positron emission tomography and by gamma counter. We found that FAD mice displayed a higher uptake of [18F]F-HPA-12 in the brain, independently from the APOE4 or APOE3 genetic background. FAD mice could be distinguished from littermate control animals with a sensitivity of 85.7% and a specificity of 87.5%, by gamma counter measurements. Metabolic analysis of [18F]F-HPA-12 in the brain suggested that the tracer is degraded less efficiently in the FAD mice. Furthermore, the radioactive signal registered in the hippocampus correlated with an increase of Cer d18:1/20:2 levels measured in the same brain region by mass spectrometry. Our data gives additional proof that ceramide metabolism is different in FAD mice compared to controls. Ceramide analogs like HPA-12 may function as metabolic probes to study ceramide disbalance in the brain

    Lipid degradation promotes prostate cancer cell survival

    Get PDF
    Prostate cancer is the most common male cancer and androgen receptor (AR) is the major driver of the disease. Here we show that Enoyl-CoA delta isomerase 2 (ECI2) is a novel AR-target that promotes prostate cancer cell survival. Increased ECI2 expression predicts mortality in prostate cancer patients (p = 0.0086). ECI2 encodes for an enzyme involved in lipid metabolism, and we use multiple metabolite profiling platforms and RNA-seq to show that inhibition of ECI2 expression leads to decreased glucose utilization, accumulation of fatty acids and down-regulation of cell cycle related genes. In normal cells, decrease in fatty acid degradation is compensated by increased consumption of glucose, and here we demonstrate that prostate cancer cells are not able to respond to decreased fatty acid degradation. Instead, prostate cancer cells activate incomplete autophagy, which is followed by activation of the cell death response. Finally, we identified a clinically approved compound, perhexiline, which inhibits fatty acid degradation, and replicates the major findings for ECI2 knockdown. This work shows that prostate cancer cells require lipid degradation for survival and identifies a small molecule inhibitor with therapeutic potential.</p

    Structural mechanism for inhibition of PP2A-B56α and oncogenicity by CIP2A.

    Get PDF
    The protein phosphatase 2A (PP2A) heterotrimer PP2A-B56α is a human tumour suppressor. However, the molecular mechanisms inhibiting PP2A-B56α in cancer are poorly understood. Here, we report molecular level details and structural mechanisms of PP2A-B56α inhibition by an oncoprotein CIP2A. Upon direct binding to PP2A-B56α trimer, CIP2A displaces the PP2A-A subunit and thereby hijacks both the B56α, and the catalytic PP2Ac subunit to form a CIP2A-B56α-PP2Ac pseudotrimer. Further, CIP2A competes with B56α substrate binding by blocking the LxxIxE-motif substrate binding pocket on B56α. Relevant to oncogenic activity of CIP2A across human cancers, the N-terminal head domain-mediated interaction with B56α stabilizes CIP2A protein. Functionally, CRISPR/Cas9-mediated single amino acid mutagenesis of the head domain blunted MYC expression and MEK phosphorylation, and abrogated triple-negative breast cancer in vivo tumour growth. Collectively, we discover a unique multi-step hijack and mute protein complex regulation mechanism resulting in tumour suppressor PP2A-B56α inhibition. Further, the results unfold a structural determinant for the oncogenic activity of CIP2A, potentially facilitating therapeutic modulation of CIP2A in cancer and other diseases

    Ceramide analog [18F]F-HPA-12 detects sphingolipid disbalance in the brain of Alzheimer’s disease transgenic mice by functioning as a metabolic probe

    Get PDF
    The metabolism of ceramides is deregulated in the brain of Alzheimer's disease (AD) patients and is associated with apolipoprotein (APO) APOE4 and amyloid-β pathology. However, how the ceramide metabolism changes over time in AD, in vivo, remains unknown. Distribution and metabolism of [18F]F-HPA-12, a radio-fluorinated version of the ceramide analog N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl) dodecanamide, was investigated in the brain of AD transgenic mouse models (FAD) on an APOE4 or APOE3 genetic background, by positron emission tomography and by gamma counter. We found that FAD mice displayed a higher uptake of [18F]F-HPA-12 in the brain, independently from the APOE4 or APOE3 genetic background. FAD mice could be distinguished from littermate control animals with a sensitivity of 85.7% and a specificity of 87.5%, by gamma counter measurements. Metabolic analysis of [18F]F-HPA-12 in the brain suggested that the tracer is degraded less efficiently in the FAD mice. Furthermore, the radioactive signal registered in the hippocampus correlated with an increase of Cer d18:1/20:2 levels measured in the same brain region by mass spectrometry. Our data gives additional proof that ceramide metabolism is different in FAD mice compared to controls. Ceramide analogs like HPA-12 may function as metabolic probes to study ceramide disbalance in the brain

    Analysis of the disulfide linkage pattern in circulin A and B, HIV-inhibitory macrocyclic peptides

    No full text
    Circulin A and B are members of a family of macrocyclic peptides, originally isolated from the tropical tree Chassalia parvifolia, that have been shown to display anti-HIV activity. Complete structural elucidation of these highly constrained peptides was difficult due to their cyclic amide backbone and the presence of six disulfide-linked cysteines. In the present study, the disulfide pairing motif of circulin A and circulin B was determined. Since the circulins were resistant to enzymatic proteolysis, cysteine residue pairings were identified by analysis of the complex mixture of cleavage products that resulted from partial acid hydrolysis of the native peptides. Combined utilization of HPLC, fast atom bombardment mass spectrometry and peptide recognition software ("F-MASS" and "F-LINK" programs) were employed to identify the cleavage products. Thus, we were able to unambiguously identify the disulfide linkage pattern in circulin A and circulin B as Cys1-Cys4, Cys2-Cys5 and Cys3-Cys6, where the numbers on the cystine residues refer to their respective order in the peptides.status: publishe

    Fulfilling the Krebs and Beavo criteria for studying protein phosphorylation in the era of mass spectrometry-driven kinome research.

    No full text
    The reversible phosphorylation of proteins controls virtually all aspects of cell function. However, in order to establish that the phosphorylation of a protein by a particular protein kinase is of physiological relevance, a series of criteria (proposed by Krebs & Beavo, 1979 ) should be satisfied. Surprisingly, amongst the thousands of protein kinase targets that have been reported in the literature, there are not so many for which there is good evidence for phosphorylation having functional consequences in vivo. Here we review the approaches that can be used to establish physiologically important protein phosphorylation according to the Krebs and Beavo criteria, taking as an example heart 6-phosphofruco-2-kinase phosphorylation-induced activation by insulin. We also point out the pitfalls of the various techniques that can be used to implicate the involvement of a particular protein kinase in a biological response. Lastly, we discuss the use of mass spectrometry techniques to search for new protein kinase targets, bearing in mind that each new target found would have to be validated by the criteria before being considered as a bona fide protein kinase substrate

    Lipidomics in drug development

    No full text
    Numerous human pathologies, including common conditions such as obesity, diabetes, cardiovascular disease, cancer, inflammatory disease and neurodegeneration, involve changes in lipid metabolism. Likewise, a growing number of drugs are being developed that directly or indirectly affect lipid metabolic pathways. Instead of classical and cumbrous radiochemical analyses, lipid profiling by mass spectrometry (MS)-based lipidomics holds great potential as companion diagnostic in several steps along the drug development process. In this review we describe some typical lipidomics set-ups and illustrate how these technologies can be implemented in target discovery, compound screening, in vitro and in vivo preclinical testing, toxicity testing of drugs, and prediction and monitoring of response.publisher: Elsevier articletitle: Lipidomics in drug development journaltitle: Drug Discovery Today: Technologies articlelink: http://dx.doi.org/10.1016/j.ddtec.2015.03.002 content_type: article copyright: Copyright © 2015 Published by Elsevier Ltd.status: publishe
    corecore