30 research outputs found

    An open-format enteroid culture system for interrogation of interactions between Toxoplasma gondii and the intestinal epithelium.

    Get PDF
    When transmitted through the oral route, Toxoplasma gondii first interacts with its host at the small intestinal epithelium. This interaction is crucial to controlling initial invasion and replication, as well as shaping the quality of the systemic immune response. It is therefore an attractive target for the design of novel vaccines and adjuvants. However, due to a lack of tractable infection models, we understand surprisingly little about the molecular pathways that govern this interaction. The in vitro culture of small intestinal epithelium as 3D enteroids shows great promise for modeling the epithelial response to infection. However, the enclosed luminal space makes the application of infectious agents to the apical epithelial surface challenging. Here, we have developed three novel enteroid-based techniques for modeling T. gondii infection. In particular, we have adapted enteroid culture protocols to generate collagen-supported epithelial sheets with an exposed apical surface. These cultures retain epithelial polarization, and the presence of fully differentiated epithelial cell populations. They are susceptible to infection with, and support replication of, T. gondii. Using quantitative label-free mass spectrometry, we show that T. gondii infection of the enteroid epithelium is associated with up-regulation of proteins associated with cholesterol metabolism, extracellular exosomes, intermicrovillar adhesion, and cell junctions. Inhibition of host cholesterol and isoprenoid biosynthesis with Atorvastatin resulted in a reduction in parasite load only at higher doses, indicating that de novo synthesis may support, but is not required for, parasite replication. These novel models therefore offer tractable tools for investigating how interactions between T. gondii and the host intestinal epithelium influence the course of infection

    A novel <i>in vitro</i> model of the small intestinal epithelium in co-culture with ‘gut-like’ dendritic cells

    Get PDF
    Abstract Cross-talk between dendritic cells (DCs) and the intestinal epithelium is important in the decision to mount a protective immune response to a pathogen or to regulate potentially damaging responses to food antigens and the microbiota. Failures in this decision-making process contribute to the development of intestinal inflammation, making the molecular signals that pass between DCs and intestinal epithelial cells potential therapeutic targets. Until now, in vitro models with sufficient complexity to understand these interactions have been lacking. Here, we outline the development of a co-culture model of in vitro differentiated ‘gut-like’ DCs with small intestinal organoids (enteroids). Sequential exposure of murine bone marrow progenitors to Flt3L, granulocyte macrophage colony-stimulating factor (GM-CSF) and all-trans-retinoic acid (RA) resulted in the generation of a distinct population of conventional DCs expressing CD11b+SIRPα+CD103+/− (cDC2) exhibiting retinaldehyde dehydrogenase (RALDH) activity. These ‘gut-like’ DCs extended transepithelial dendrites across the intact epithelium of enteroids. ‘Gut-like’ DC in co-culture with enteroids can be utilized to define how epithelial cells and cDCs communicate in the intestine under a variety of different physiological conditions, including exposure to different nutrients, natural products, components of the microbiota, or pathogens. Surprisingly, we found that co-culture with enteroids resulted in a loss of RALDH activity in ‘gut-like’ DCs. Continued provision of GM-CSF and RA during co-culture was required to oppose putative negative signals from the enteroid epithelium. Our data contribute to a growing understanding of how intestinal cDCs assess environmental conditions to ensure appropriate activation of the immune response.</jats:p

    The ontogeny of nuclear estrogen receptor isoform expression and the effect of 17β-estradiol in embryonic rainbow trout ( Oncorhynchus mykiss)

    No full text
    Ligand bound nuclear estrogen receptor (ER) acts as a transcription factor regulating the expression of estrogen dependent genes. There are four nuclear ER isoforms in rainbow trout ( Oncorhynchus mykiss). The objective of this study was to measure whole body mRNA levels of the two ERα isoforms (α1/α2) and the two ERβ isoforms (β1/β2) in male and female embryos from 50 to 600 degree-days (DD; days post-fertilization × water temperature) and in embryos exposed to vehicle or 17β-estradiol (E2) for 2 h at 230, 240 and 250 DD. All four isoforms were detected at every time point in both sexes. Sexual dimorphism was rarely observed; at 50 DD the level of ERα2 mRNA was significantly greater in males than in females and at 100 DD the level of ERβ1 mRNA was significantly greater in females than in males ( p < 0.05). Expression profiles of the two ERα isoforms were slightly different from one another, whereas the ERβ isoforms exhibited similar expression patterns. The effect of E2 was not different between male and female embryos. The level of ERα1 mRNA increased significantly at 240 DD; a similar but not statistically significant trend was observed at 230 and 250 DD. Despite the critical role of estrogen during sex differentiation in rainbow trout, the receptivity to this hormone as measured by the response in mRNA levels of ER appears to be largely the same between males and females and ERα1 is the only E2 responsive isoform

    Variation Among Rainbow Trout (Oncorhynchus mykiss) Estrogen Receptor Isoform 3′ Untranslated Regions and the Effect of 17β-Estradiol on mRNA Stability in Hepatocyte Culture

    No full text
    Adenine and uridine (AU)–rich elements in the 3′ untranslated region (3′UTR) have been implicated in the 17β-estradiol (E2) stabilization of vertebrate estrogen receptor (ER) mRNAs. To date, fishes have the most complex arrangement of nuclear ERs with up to two isoforms of each of the two genes in some species (i.e., four different ERs). The objective of this study was to analyze the sequence variation of 3′UTRs among the four ER isoforms in the rainbow trout and determine to what degree it is responsible for the estrogen-induced increase of ER mRNAs in the liver of this fish. This was done by comparing the 3′UTR DNA sequence length and composition, and by measuring expression of ER isoform 3′UTR luciferase reporter constructs in primary cultures of trout hepatocytes treated with E2. There were large differences both in overall length and in sequence composition among the four ER isoform 3′UTRs. The ERα1 sequence was the longest and the only one of the four that contained multiple copies of the canonical AU-rich elements (AUUUA) as well as the stability sequence (GCUGAU). E2 treatment significantly increased the luciferase activity in cells transiently transfected with the ERα1 reporter construct, relative to cells transfected with reporter vectors containing the other three ER isoform 3′UTRs or the parental vector control. These results support the hypothesis that the E2-induced increase in hepatic ERα1 mRNA in rainbow trout is due in part to sequence variability among ER isoform 3′UTRs. We conclude that posttranscriptional stabilization of ER mRNA by E2 appears to be conserved among vertebrates

    Deep drawing of superplastic material

    No full text

    Curriculum continuity Primary to secondary

    No full text
    6.75SIGLEAvailable from British Library Lending Division - LD:GPB-5032 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore