2,316 research outputs found

    Multiparton Interactions in Photoproduction at HERA

    Get PDF
    The high energy photoproduction of jets is being observed at the ep collider, HERA. It may be that the HERA centre-of-mass energy is sufficiently large that the production of more than one pair of jets per ep collision becomes possible, owing to the large number density of the probed gluons. We construct a Monte Carlo model of such multiparton interactions and study their effects on a wide range of physical observables. The conclusion is that multiple interactions could have very significant effects upon the photoproduction final state and that this would for example make extractions of the gluon density in the photon rather difficult. Total rates for the production of many (i.e. > 2) jets could provide direct evidence for the presence of multiple interactions, although parton showering and hadronization significantly affect low transverse energy jets.Comment: 21 pages, 8 figures include

    A Note in the Skyrme Model with Higher Derivative Terms

    Full text link
    Another stabilizer term is used in the classical Hamiltonian of the Skyrme Model that permits in a much simple way the generalization of the higher-order terms in the pion derivative field. Improved numerical results are obtained.Comment: Latex. Figure not include; available upon request. 7 pages, report

    Proving opacity of a pessimistic STM

    Get PDF
    Transactional Memory (TM) is a high-level programming abstraction for concurrency control that provides programmers with the illusion of atomically executing blocks of code, called transactions. TMs come in two categories, optimistic and pessimistic, where in the latter transactions never abort. While this simplifies the programming model, high-performing pessimistic TMs can complex. In this paper, we present the first formal verification of a pessimistic software TM algorithm, namely, an algorithm proposed by Matveev and Shavit. The correctness criterion used is opacity, formalising the transactional atomicity guarantees. We prove that this pessimistic TM is a refinement of an intermediate opaque I/O-automaton, known as TMS2. To this end, we develop a rely-guarantee approach for reducing the complexity of the proof. Proofs are mechanised in the interactive prover Isabelle

    Shafranov's virial theorem and magnetic plasma confinement

    Get PDF
    Shafranov's virial theorem implies that nontrivial magnetohydrodynamical equilibrium configurations must be supported by externally supplied currents. Here we extend the virial theorem to field theory, where it relates to Derrick's scaling argument on soliton stability. We then employ virial arguments to investigate a realistic field theory model of a two-component plasma, and conclude that stable localized solitons can exist in the bulk of a finite density plasma. These solitons entail a nontrivial electric field which implies that purely magnetohydrodynamical arguments are insufficient for describing stable, nontrivial structures within the bulk of a plasma.Comment: 9 pages no figure

    Energy Dependence of the Contribution of Pion Exchange to Large-Rapidity-Gap Events in Deep Inelastic Scattering

    Get PDF
    We study the energy dependence of the contribution of pion exchange to large-rapidity-gap events in deep inelastic scattering. The results show that this contribution can be quite significant at low energy and that the LRG events observed by E665 collaboration in \mu Xe and \mu D interactions at 490 GeVGeV can be reasonably well described in terms of meson exchange. We also show that the distribution of the maximum rapidity for all hadrons is quite different from that for charged hadrons only and that the former exhibits also shoulder-like structure for events at 490 GeVGeV similar to that at HERA.Comment: 12 pages, 4 figures, Phys. Rev. D (in press

    A Semi-Analytical Analysis of Texture Collapse

    Full text link
    This study presents a simplified approach to studying the dynamics of global texture collapse. We derive equations of motion for a spherically symmetric field configuration using a two parameter ansatz. Then we analyse the effective potential for the resulting theory to understand possible trajectories of the field configuration in the parameter space of the ansatz. Numerical results are given for critical winding and collapse time in spatially flat non-expanding, and flat expanding universes. In addition, the open non-expanding and open-expanding cases are studied.Comment: 12 pages, figures available from author, BROWN-HET-895, uses phyzz

    Critical holes in undercooled wetting layers

    Full text link
    The profile of a critical hole in an undercooled wetting layer is determined by the saddle-point equation of a standard interface Hamiltonian supported by convenient boundary conditions. It is shown that this saddle-point equation can be mapped onto an autonomous dynamical system in a three-dimensional phase space. The corresponding flux has a polynomial form and in general displays four fixed points, each with different stability properties. On the basis of this picture we derive the thermodynamic behaviour of critical holes in three different nucleation regimes of the phase diagram.Comment: 18 pages, LaTeX, 6 figures Postscript, submitted to J. Phys.

    Phenomenological description of the gamma* p cross section at low Q2

    Full text link
    Low Q2 photon-proton cross sections are analysed using a simple, QCD-motivated parametrisation σγp1/(Q2+Q02)\sigma_{\gamma^\star p}\propto 1/(Q^2+Q_0^2), which gives a good description of the data. The Q2 dependence of the gamma* p cross section is discussed in terms of the partonic transverse momenta of the hadronic state the photon fluctuates into.Comment: 14 pages, revtex, epsfig, 2 figure

    New Global Defect Structures

    Full text link
    We investigate the presence of defects in systems described by real scalar field in (D,1) spacetime dimensions. We show that when the potential assumes specific form, there are models which support stable global defects for D arbitrary. We also show how to find first-order differential equations that solve the equations of motion, and how to solve models in D dimensions via soluble problems in D=1. We illustrate the procedure examining specific models and finding explicit solutions.Comment: RevTex4, 4 pages, 3 eps figures; to be published in Phys. Rev. Let

    Deep-Inelastic Final States in a Space-Time Description of Shower Development and Hadronization

    Get PDF
    We extend a quantum kinetic approach to the description of hadronic showers in space, time and momentum space to deep-inelastic epep collisions, with particular reference to experiments at HERA. We follow the history of hard scattering events back to the initial hadronic state and forward to the formation of colour-singlet pre-hadronic clusters and their decays into hadrons. The time evolution of the space-like initial-state shower and the time-like secondary partons are treated similarly, and cluster formation is treated using a spatial criterion motivated by confinement and a non-perturbative model for hadronization. We calculate the time evolution of particle distributions in rapidity, transverse and longitudinal space. We also compare the transverse hadronic energy flow and the distribution of observed hadronic masses with experimental data from HERA, and find encouraging results. The techniques developed in this paper may be applied in the future to more complicated processes such as eA, pp, pA and AA collisions.Comment: 44 pages plus 14 postscript figure
    corecore