10 research outputs found

    Commercially Available Antibodies to Human Tumour Necrosis Factor-α Tested for Cross-Reactivity with Ovine and Bovine Tumour Necrosis Factor-α using Flow Cytometric Assays

    Get PDF
    A thorough understanding of the immune system, including the role of different cytokines, during inflammatory diseases in ruminants could lead to the development of new diagnostic methods and treatments. Tumour necrosis factor-α (TNF-α) is an important cytokine in the onset of the inflammatory responses. Unfortunately, the number of studies on cytokines, like TNF-α, in ruminants is limited due to a lack of species-specific reagents. As cytokines have remained rather conserved during evolution, cross-reactivity between animal species may occur. Therefore, the aim of the present study was to investigate 5 commercially available antibodies against human TNF-α for their ability to cross-react with ovine and/or bovine TNF-α, using a bead-based flow cytometric method. Two of the antibody clones (Mab 11 and 6401.1111) showed cross reactivity with ovine recombinant TNF-α in concentrations above 2.5 ng/ml. However, none of the antibodies detected TNF-α in bovine milk, or serum containing known concentrations of bovine TNF-α, as earlier determined with ELISA. The results could be due to inability of the antibodies to cross-react between species, but quenching of the signal by matrix proteins might also have lowered the response

    Lidar fluorescence measurements of algal growth on electrical insulators

    No full text
    Fluorescence measurements using lidar techniques have been shown to be useful for monitoring of algal growth on e.g. historical monuments. In this experiment similar measurements were performed on electrical insulators to examine the correlation between algal growth and the quality of the insulator, a factor of importance in the high-voltage grid managemen

    Fluorescence lidar imaging of fungal growth on high-voltage outdoor composite insulators

    No full text
    Remote fluorescence imaging of fungal growth on polymeric high-voltage insulators was performed using a mobile lidar system with a laser wavelength of 355 nm. Insulator areas contaminated by fungal growth could be distinguished from clean surfaces and readily be imaged. The experiments were supported by detailed spectral studies performed in laboratory using a fibre-optic fluorosensor incorporating an optical multi-channel analyser system (OMA) and a nitrogen laser emitting radiation at 33 7 nm
    corecore