93 research outputs found

    MATHEMATICAL MODELING OF MOLECULAR TRANSMEMBRANE TRANSPORT AND CHANGES OF TISSUESĀ“ DIELECTRIC PROPERTIES DUE TO ELECTROPORATION

    Full text link
    Visokonapetostni električni pulzi povečajo prepustnost celične membrane (Tsong 1991Weaver 1993Kotnik et al. 2012) skozi pore (Abidor et al. 1979), ki nastanejo na tistih njenih delih, kjer vsiljena transmembranska napetost preseže kritično vrednost (Towhidi et al. 2008Kotnik et al. 2010). Elektroporacija je reverzibilna, če si celica po pulzih opomore, in ireverzibilna, če je Å”koda preobsežna in celica odmre (Pakhomova et al. 2013bJiang et al. 2015a). Trenutne optične metode por ne morejo zaznati, zato njihov nastanek zaznavamo posredno, bodisi z meritvami vnosa različnih molekul v celice ali z meritvami električnih lastnosti celic (Napotnik in Miklavčič 2017). Uporaba elektroporacije V živilski industriji (Toepfl 2012Toepfl et al. 2014) uporabljamo elektroporacijo oziroma pulzirajoča električna polja (angl. pulsed electric fields), kar je uveljavljen izraz v tej industriji, za uničevanje patogenih organizmov in njihovih produktov (encimov in toksinov). V nasprotju s termično obdelavo hrane električni pulzi ne vplivajo na okus, barvo ali hranilno vrednost. V biotehnologiji uporabljamo elektroporacijo za ekstrakcijo molekul iz mikroorganizmov in rastlin, s čimer se izognemo uporabi kemičnih sredstev in ne uničimo celičnih organelov, torej se izognemo tudi dodatnemu čiŔčenju končnega produkta (Sack et al. 2010Haberl et al. 2013aMahnič-Kalamiza et al. 2014bKotnik et al. 2015). Primeri: ekstrakcija DNK iz bakterijsladkorja iz sladkorne pese (Haberl et al. 2013b), sokov iz sadjapolifenolov iz grozdja za izboljÅ”anje kvalitete vina (PuĆ©rtolas et al. 2010)vode pri suÅ”enju zelene biomase, ki služi kot vir za biogorivo (Golberg et al. 2016). Elektroporacija je tudi nova metoda pri zamrzovanju celic in tkiv, angl. cryopreservation (Galindo in Dymek 2016Dovgan et al. 2017). Elektroporacijo uporabljamo tudi v medicini (Miklavčič et al. 2010Yarmush et al. 2014), in sicer pri elektrokemoterapiji (Miklavčič et al. 2012Mali et al. 2013Cadossi et al. 2014Miklavčič et al. 2014Campana et al. 2014SerÅ”a et al. 2015), netermičnem odstranjevanju tkiva z ireverzibilno elektroporacijo (Davalos et al. 2005Garcia et al. 2010JosĆ© et al. 2012Cannon et al. 2013Scheffer et al. 2014bJiang et al. 2015aRossmeisl et al. 2015), genski terapiji (Golzio et al. 2002Vasan et al. 2011Gothelf in Gehl 2012Calvet et al. 2014Heller in Heller 2015Trimble et al. 2015) in vnosu učinkovin v kožo in skoznjo (Denet et al. 2004Zorec et al. 2013b). Pri genski terapiji vnesemo v celice plazmide, v katerih je zapisana sinteza določenega proteina, ki lahko spremeni bioloÅ”ko funkcijo celice (Aihara in Miyazaki 1998Heller in Heller 2015). Z elektroporacijo poviÅ”amo varnost genske terapije, saj se izognemo uporabi virusov in kemikalij. Mehanizmi genske terapije z elektroporacijo Å”e niso popolnoma pojasnjeni, osnovni koraki so opisani v literaturi (Rosazza et al. 2016). Z elektroporacijo lahko zlivamo različne celice, s čimer pridobivamo celice, ki proizvajajo monoklonska protitelesa ali inzulin (Ramos in TeissiĆ© 2000Trontelj et al. 2008Rems et al. 2013). V doktorski disertaciji sem se osredotočila na uporabo elektroporacije v medicini, predvsem pri elektrokemoterapiji, netermičnem odstranjevanju tkiva z ireverzibilno elektroporacijo in pri vnosu učinkovin v kožo in skoznjo je, zato so ti trije posegi podrobneje opisani v naslednjem poglavju. Medicinski posegi z elektroporacijo ā€“ elektrokemoterapija, netermično odstranjevanje tkiva z ireverzibilno elektroporacijo in vnos učinkovin v kožo in skoznjo Elektrokemoterapija je kombinacija kemoterapije in električnih pulzov, dovedenih neposredno na tarčno tkivo. Električni pulzi povečajo prepustnost celične membrane za kemoterapevtike, zato povečamo učinkovitost zdravljenja, obenem pa zmanjÅ”amo dovedeno dozo kemoterapevtika in omilimo stranske učinke. Celoten tumor mora biti pokrit z dovolj visokim električnim poljem, da povečamo prepustnost vseh tumorskih celic (Miklavčič et al. 2006a), zagotoviti pa moramo tudi dovolj visoko koncentracijo kemoterapevtika znotraj tumorja (Miklavčič et al. 2014). OkoliÅ”ko tkivo ne sme biti uničeno, torej mora biti električno polje okoli tumorja pod mejo za ireverzibilno elektroporacijo. Pri elektrokemoterapiji običajno dovajamo osem pulzov dolžine 100 Ī¼s s ponavljalno frekvenco 1 Hz. S poskusi določena meja za poviÅ”anje prepustnosti tumorskega tkiva je 0,4 kV/cm (Miklavčič et al. 2010). Osem pulzov je bilo določenih kot optimalno Å”tevilo pulzov (Marty et al. 2006Mir et al. 2006), večje Å”tevilo dovedenih pulzov namreč že zmanjÅ”uje preživetje (Dermol in Miklavčič 2015). Za zdravljenje tumorjev z elektrokemoterapijo so bili definirani standardni postopki (angl. standard operating procedures) (Marty et al. 2006Mir et al. 2006), kjer so glede na Å”tevilo tumorjev, njihovo velikost in lokacijo (na koži ali pod kožo) določeni tip elektrod, kemoterapevtik, anestezija in način dovajanja kemoterapevtika. Kemoterapevtik lahko dovedemo lokalno ali sistemsko. V elektrokemoterapiji oz. terapiji z električnimi pulzi sta najbolj razÅ”irjena kemoterapevtika cisplatin in bleomicin. Z elektrokemoterapijo je možno zdraviti tudi globlje ležeče tumorje (Miklavčič et al. 2010Pavliha et al. 2013Edhemović et al. 2014Miklavčič in Davalos 2015). V zadnjem času se uveljavlja tudi uničevanje tumorskih celic z visokimi koncentracijami kalcija in električnimi pulzi (Frandsen et al. 2015Frandsen et al. 2016Frandsen et al. 2017). Pri elektrokemoterapiji se pojavijo Å”e dodatni učinki, ki poviÅ”ajo učinkovitost elektroporacije. Vazokonstrikcija zmanjÅ”a spiranje kemoterapevtika iz tumorja in s tem ohranja visoko koncentracijo kemoterapevtika v tumorju, obenem se zmanjÅ”a pretok krvi skozi tumor, kar povzroči hipoksijo in pomanjkanje hranilnih snovi (Mir 2006SerÅ”a et al. 2008). Elektrokemoterapija sproži tudi odziv imunskega sistema, ki nato odstrani preostale tumorske celice (SerÅ”a et al. 2015). Z ireverzibilno elektroporacijo netermično odstranjujemo tumorje brez uporabe kemoterapevtika (Jiang et al. 2015a). Tako se popolnoma izognemo stranskim učinkom kemoterapevtikov, vendar na račun več dovedene energije in posledično Joulovega gretja. Pri ireverzibilni elektroporaciji dovajamo več (okoli 90) električnih pulzov, dolgih od 50 Ī¼s do 100 Ī¼s, s ponavljalno frekvenco 1 Hz. Dovedeno električno polje je v rangu nekaj kV/cm, kar je dosti več kot pri elektrokemoterapiji. Pri ireverzibilni elektroporaciji lahko z visoko natančnostjo odstranimo želeno tkivo ā€“ območje med uničenim in nepoÅ”kodovanim tkivom je Å”iroko le nekaj premerov celic (Rubinsky et al. 2007). Za odstranjevanje tumorjev tradicionalno uporabljamo termične metode (Hall et al. 2014) ā€“ radiofrekvenčno odstranjevanje in odstranjevanje s tekočim duÅ”ikom, kjer tkivo uničujemo z visoko oz. z nizko temperaturo. Prednost ireverzibilne elektroporacije pred uveljavljenimi termičnimi metodami je krajÅ”i čas zdravljenja, izognemo se učinkom hlajenja oz. gretja tkiva zaradi bližine žil (Golberg et al. 2015), pri čemer ostanejo okoliÅ”ke pomembne strukture (žile, živci) nedotaknjene (Jiang et al. 2015a). Tudi pri ireverzibilni elektroporaciji je v dokončno odstranitev tumorskih celic vpleten imunski sistem (Neal et al. 2013). Pri elektrokemoterapiji in ireverzibilni elektroporaciji se zaradi daljÅ”ih pulzov in ponavljalne frekvence 1 Hz pojavljajo težave zaradi krčenja miÅ”ic (Miklavčič et al. 2005), bolečine med dovajanjem pulzov, heterogenosti električnih lastnosti tkiv v tem frekvenčnem področju ter zaradi možnosti srčnih aritmij (Ball et al. 2010). Bolečini in krčenju miÅ”ic se lahko izognemo, če pulze dovajamo z viÅ”jo frekvenco, npr. 5 kHz (Županič et al. 2007SerÅ”a et al. 2010). Srčnim aritmijam se izognemo tako, da s sinhroniziramo dovedene električne pulze z električno aktivnostjo srčne miÅ”ice (Mali et al. 2008Deodhar et al. 2011aMali et al. 2015). Bolečini, krčenju miÅ”ic in heterogenosti električnih lastnosti tkiv se lahko izognemo z dovajanjem 1 Ī¼s bipolarnih pulzov (Arena et al. 2011Arena in Davalos 2012Sano et al. 2015). V zadnjem času so se pojavile tudi metode, s katerimi so vnos barvil v celico dosegli brezkontaktno s t. i. magnetoporacijo (Chen et al. 2010Towhidi et al. 2012Kardos in Rabussay 2012Novickij et al. 2015Kranjc et al. 2016Novickij et al. 2017bNovickij et al. 2017a). Elektroporacijo lahko uporabljamo ne le za zdravljenje tumorjev, temveč tudi za vnos učinkovin v kožo in skoznjo. Vnos učinkovin skozi kožo je neinvaziven, poleg tega pa se izognemo degradaciji učinkovin pri prehodu skozi prebavni trakt. Skozi kožo lahko preide le malo molekul, zato uporabljamo različne metode za povečanje prehoda učinkovin ā€“ iontoforezo, radiofrekvenčno mikroablacijo, laser, mikroigle, ultrazvok in elektroporacijo (Zorec et al. 2013b). Proces elektroporacije kože je slabo razumljen. Predpostavljamo, da pri dovajanju visokonapetostnih električnih pulzov v roženi plasti nastanejo lokalna transportna območja, kjer sta poviÅ”ani električna prevodnost in prepustnost (Pliquett et al. 1996Pliquett et al. 1998Pliquett et al. 1998PavÅ”elj in Miklavčič 2008a). Skozi lokalna transportna območja lahko nato učinkovine Å”e nekaj ur po dovedenih pulzih vstopajo skozi kožo v krvni obtok (Zorec et al. 2013a). Gostota teh območij je odvisna od električnega polja v koži ā€“ viÅ”je električno polje jih povzroči več. Velikost lokalnih transportnih območij je odvisna od trajanja pulza. Med samim pulzom se zaradi Joulovega gretja topijo lipidi v roženi plasti, kar povzroči njihovo Å”irjenje (Pliquett et al. 1996Prausnitz et al. 1996Pliquett et al. 1998Weaver et al. 1999Vanbever et al. 1999Gowrishankar et al. 1999b). Načrtovanje posegov elektrokemoterapije in netermičnega odstranjevanja tkiva z ireverzibilno elektroporacijo Pri zdravljenju tumorjev z elektroporacijo lahko uporabimo standardne oblike in postavitve elektrod z že določenimi parametri električnih pulzov (Marty et al. 2006Mir et al. 2006Campana et al. 2014). Če zdravimo velike tumorje ali tumorje nepravilnih oblik, ki pogosto ležijo globlje, s standardno postavitvijo elektrod ne moremo zagotoviti ustrezne pokritosti tumorja z dovolj visokim električnim poljem. V tem primeru lahko elektrode med samim posegom večkrat premaknemo ali pa prilagodimo njihovo Å”tevilo in postavitev. Pri tem moramo prej pripraviti načrt posega (Kos et al. 2010Miklavčič et al. 2010Pavliha et al. 2012Linnert et al. 2012Edhemović et al. 2014). V njem zagotovimo, da bo cel tumor izpostavljen dovolj visokemu električnemu polju (Miklavčič et al. 2006a), obenem pa Å”koda na okoliÅ”kem tkivu minimalna. Načrtovanje posega poteka v več korakih: 1. zajem medicinskih slik (računalniÅ”ka tomografija, magnetna resonanca) tumorja in okoliÅ”kega tkiva2. obdelava slik3. razgradnja slik in določitev geometrije tkiva4. vzpostavitev tridimenzionalnega modela5. optimizacija postavitve elektrod glede na obliko in velikost tumorja6. izdelava modela elektroporacije (izračun električnega polja in spremembe električne prevodnosti tkiva)7. optimizacija napetosti med elektrodami in položaja elektrod (Pavliha et al. 2012). Na sliki 1 lahko vidimo izračunano električno polje v tumorju in okoliÅ”kem tkivu pri eni izmed možnih postavitev elektrod.Electroporation is a phenomenon, which occurs when short high voltage pulses are applied to cells and tissues resulting in a transient increase in membrane permeability or cell death, presumably due to pore formation. If cells recover after pulse application, this is reversible electroporation. If cells die, this is irreversible electroporation. Electroporation is used in biotechnology for biocompound extraction and cryopreservation, in food processing for sterilization and pasteurization of liquid food and in medicine for treating tumors by electrochemotherapy or irreversible electroporation as an ablation technique, for gene electrotransfer, transdermal drug delivery, DNA vaccination, and cell fusion. In electroporation-based medical treatments, we can treat tumors with predefined electrode geometry and parameters of electric pulses. When we treat larger tumors of irregular shape treatment plan of the position of the electrodes and parameters of the electric pulses has to be calculated before each treatment to assure coverage of the tumor with a sufficient electric field. In treatment plans, currently, 1) we assume that above an experimentally determined critical electric field all cells are affected and below not, although, in reality, the transition between non-electroporated and electroporated state is continuous. 2) We do not take into account the excitability of some tissues. 3) The increase in tissuesā€™ conductivity is described phenomenologically and does not include mechanisms of electroporation. 4) Transport of chemotherapeutics into the tumor cells in electrochemotherapy treatments is not included in the treatment plan although it is vital for a successful treatment. We focused on the mathematical and numerical models of electroporation with the aim of including them in the treatment planning of electroporation-based medical treatments. We aimed to model processes happening during electroporation of tissues, relevant in the clinical procedures, by taking into account processes happening at the single cell level. First, we used mathematical models of cell membrane permeability and cell death which are phenomenological descriptions of experimental data. The models were chosen on the basis of the best fit with the experimental data. However, they did not include mechanisms of electroporation, and their transferability to tissues was questionable. We modeled time dynamics of dye uptake due to increased cell membrane permeability in several electroporation buffers with regard to the electrosensitization, i.e., delayed hypersensitivity to electric pulses caused by pretreating cells with electric pulses. We also modeled the strength-duration depolarization curve and cell membrane permeability curve of excitable and non-excitable cell lines which could be used to optimize pulse parameters to achieve maximal drug uptake at minimal tissue excitation. Second, we modeled change in dielectric properties of tissues during electroporation. Model of change in dielectric properties of tissues was built for skin and validated with current-voltage measurements. Dielectric properties of separate layers of skin before electroporation were determined by taking into account geometric and dielectric properties of single cells, i.e., keratinocytes, corneocytes. Dielectric properties of separate layers during electroporation were obtained from cell-level models of pore formation on single cells of lower skin layers (keratinocytes in epidermis and lipid spheres in papillary dermis) and local transport region formation in the stratum corneum. Current-voltage measurements of long low-voltage pulses were accurately described taking into account local transport region formation, pore formation in the cells of lower layers and electrode polarization. Voltage measurements of short high-voltage pulses were also accurately described in a similar way as with long low-voltage pulseshowever, the model underestimated the current, probably due to electrochemical reactions taking place at the electrode-electrolyte interface. Third, we modeled the transport of chemotherapeutics during electrochemotherapy in vivo. In electrochemotherapy treatments, transport of chemotherapeutics in sufficient amounts into the cell is vital for a successful treatment. We performed experiments in vitro and measured the intracellular platinum mass as a function of pulse number and electric field by inductively coupled plasma ā€“ mass spectrometry. Using the dualporosity model, we calculated the in vitro permeability coefficient as a function of electric field and number of applied pulses. The in vitro determined permeability coefficient was then used in the numerical model of mouse melanoma tumor to describe the transport of cisplatin to the tumor cells. We took into account the differences in the transport of cisplatin in vitro and in vivo caused by the decreased mobility of molecules and decreased membrane area available for the uptake in vivo due to the high volume fraction of cells, the presence of cell matrix and close cell connections. Our model accurately described the experimental results obtained in electrochemotherapy of tumors and could be used to predict the efficiency of electrochemotherapy in vitro thus reducing the number of needed animal experiments. In the thesis, we connected the models at the cell level to the models at the tissue level with respect to cell membrane permeability and depolarization, cell death, change in dielectric properties and transport. Our models offer a step forward in modeling and understanding electroporation at the tissue level. In future, our models could be used to improve treatment planning of electroporation-based medical treatments

    Proposal of a new research construct in female entrepreneurship

    Get PDF
    Entrepreneurship has been a gender-defined phenomenon for several decades. It has been presented as a typically male domain which for its demanding performance requires typical male characteristics. In this paper, we follow the suggestions of researchers of female entrepreneurs and focus on the research of three groups of female entrepreneurs. We propose that female entrepreneurs in different life stages have distinguished forms of human and social capital, and we apply the factors of those capitals to be measured. We observe the influence of parents, maternity as a metaphor for family involvement and family responsibilities, friends, and the broader environment on social capital. We discussed female entrepreneurship using two functions - as emotional support and incentives and as an instrumental social capital that provides access to information, resources and business partners. We added previous entrepreneurial experience, the level of education attained, business knowledge acquired at school and specific training, industry experience, previous managerial experience to the human capital function. With our model, we introduced the theory of life expectancy of women into entrepreneurship theory, which brings us closer to understanding the external influences on entrepreneurial aspirations and motivations of women of different ages

    Exploiting multimedia technologies in education, research, and university-community projects

    Get PDF
    The pandemic has led to the acceleration of the digital transformation of all university activity. Some users/university staff were better prepared for this, but others need support and training in the development of digital skills. Increasing the efficiency and effectiveness of digitized activities (administrative, educational, research, university marketing, communication, and community involvement, with business or industrial partners) require increasing concerns for the university's human resources to have the necessary knowledge of operation. Moreover, our students are from generation Z, Millennials and can be stimulated in learning, interaction, and communication with the help of digital means, multimedia technologies and social media. We are witnessing a radical change in the way communication takes place in universities and within its extended community, with its various stakeholders. In this dynamic context we have built and present the way to extend the digital/multimedia competencies of university staff (administrative, teaching, research staff, etc.) with the support of an international community associated with the Erasmus+ project: ā€œMultimedia Competencies for University Staff to Empower University - Community Collaborationsā€ (2020-1-RO01- KA203-080399)

    MATEMATIČNO MODELIRANJE SPREMEMB ELEKTRIČNIH LASTNOSTI TKIV IN TRANSPORTA PREKO CELIČNE MEMBRANE PRI ELEKTROPORACIJI

    Full text link
    Electroporation is a phenomenon, which occurs when short high voltage pulses are applied to cells and tissues resulting in a transient increase in membrane permeability or cell death, presumably due to pore formation. If cells recover after pulse application, this is reversible electroporation. If cells die, this is irreversible electroporation. Electroporation is used in biotechnology for biocompound extraction and cryopreservation, in food processing for sterilization and pasteurization of liquid food and in medicine for treating tumors by electrochemotherapy or irreversible electroporation as an ablation technique, for gene electrotransfer, transdermal drug delivery, DNA vaccination, and cell fusion. In electroporation-based medical treatments, we can treat tumors with predefined electrode geometry and parameters of electric pulses. When we treat larger tumors of irregular shape treatment plan of the position of the electrodes and parameters of the electric pulses has to be calculated before each treatment to assure coverage of the tumor with a sufficient electric field. In treatment plans, currently, 1) we assume that above an experimentally determined critical electric field all cells are affected and below not, although, in reality, the transition between non-electroporated and electroporated state is continuous. 2) We do not take into account the excitability of some tissues. 3) The increase in tissuesā€™ conductivity is described phenomenologically and does not include mechanisms of electroporation. 4) Transport of chemotherapeutics into the tumor cells in electrochemotherapy treatments is not included in the treatment plan although it is vital for a successful treatment. We focused on the mathematical and numerical models of electroporation with the aim of including them in the treatment planning of electroporation-based medical treatments. We aimed to model processes happening during electroporation of tissues, relevant in the clinical procedures, by taking into account processes happening at the single cell level. First, we used mathematical models of cell membrane permeability and cell death which are phenomenological descriptions of experimental data. The models were chosen on the basis of the best fit with the experimental data. However, they did not include mechanisms of electroporation, and their transferability to tissues was questionable. We modeled time dynamics of dye uptake due to increased cell membrane permeability in several electroporation buffers with regard to the electrosensitization, i.e., delayed hypersensitivity to electric pulses caused by pretreating cells with electric pulses. We also modeled the strength-duration depolarization curve and cell membrane permeability curve of excitable and non-excitable cell lines which could be used to optimize pulse parameters to achieve maximal drug uptake at minimal tissue excitation. Second, we modeled change in dielectric properties of tissues during electroporation. Model of change in dielectric properties of tissues was built for skin and validated with current-voltage measurements. Dielectric properties of separate layers of skin before electroporation were determined by taking into account geometric and dielectric properties of single cells, i.e., keratinocytes, corneocytes. Dielectric properties of separate layers during electroporation were obtained from cell-level models of pore formation on single cells of lower skin layers (keratinocytes in epidermis and lipid spheres in papillary dermis) and local transport region formation in the stratum corneum. Current-voltage measurements of long low-voltage pulses were accurately described taking into account local transport region formation, pore formation in the cells of lower layers and electrode polarization. Voltage measurements of short high-voltage pulses were also accurately described in a similar way as with long low-voltage pulseshowever, the model underestimated the current, probably due to electrochemical reactions taking place at the electrode-electrolyte interface. Third, we modeled the transport of chemotherapeutics during electrochemotherapy in vivo. In electrochemotherapy treatments, transport of chemotherapeutics in sufficient amounts into the cell is vital for a successful treatment. We performed experiments in vitro and measured the intracellular platinum mass as a function of pulse number and electric field by inductively coupled plasma ā€“ mass spectrometry. Using the dualporosity model, we calculated the in vitro permeability coefficient as a function of electric field and number of applied pulses. The in vitro determined permeability coefficient was then used in the numerical model of mouse melanoma tumor to describe the transport of cisplatin to the tumor cells. We took into account the differences in the transport of cisplatin in vitro and in vivo caused by the decreased mobility of molecules and decreased membrane area available for the uptake in vivo due to the high volume fraction of cells, the presence of cell matrix and close cell connections. Our model accurately described the experimental results obtained in electrochemotherapy of tumors and could be used to predict the efficiency of electrochemotherapy in vitro thus reducing the number of needed animal experiments. In the thesis, we connected the models at the cell level to the models at the tissue level with respect to cell membrane permeability and depolarization, cell death, change in dielectric properties and transport. Our models offer a step forward in modeling and understanding electroporation at the tissue level. In future, our models could be used to improve treatment planning of electroporation-based medical treatments.Visokonapetostni električni pulzi povečajo prepustnost celične membrane (Tsong 1991Weaver 1993Kotnik et al. 2012) skozi pore (Abidor et al. 1979), ki nastanejo na tistih njenih delih, kjer vsiljena transmembranska napetost preseže kritično vrednost (Towhidi et al. 2008Kotnik et al. 2010). Elektroporacija je reverzibilna, če si celica po pulzih opomore, in ireverzibilna, če je Å”koda preobsežna in celica odmre (Pakhomova et al. 2013bJiang et al. 2015a). Trenutne optične metode por ne morejo zaznati, zato njihov nastanek zaznavamo posredno, bodisi z meritvami vnosa različnih molekul v celice ali z meritvami električnih lastnosti celic (Napotnik in Miklavčič 2017). Uporaba elektroporacije V živilski industriji (Toepfl 2012Toepfl et al. 2014) uporabljamo elektroporacijo oziroma pulzirajoča električna polja (angl. pulsed electric fields), kar je uveljavljen izraz v tej industriji, za uničevanje patogenih organizmov in njihovih produktov (encimov in toksinov). V nasprotju s termično obdelavo hrane električni pulzi ne vplivajo na okus, barvo ali hranilno vrednost. V biotehnologiji uporabljamo elektroporacijo za ekstrakcijo molekul iz mikroorganizmov in rastlin, s čimer se izognemo uporabi kemičnih sredstev in ne uničimo celičnih organelov, torej se izognemo tudi dodatnemu čiŔčenju končnega produkta (Sack et al. 2010Haberl et al. 2013aMahnič-Kalamiza et al. 2014bKotnik et al. 2015). Primeri: ekstrakcija DNK iz bakterijsladkorja iz sladkorne pese (Haberl et al. 2013b), sokov iz sadjapolifenolov iz grozdja za izboljÅ”anje kvalitete vina (PuĆ©rtolas et al. 2010)vode pri suÅ”enju zelene biomase, ki služi kot vir za biogorivo (Golberg et al. 2016). Elektroporacija je tudi nova metoda pri zamrzovanju celic in tkiv, angl. cryopreservation (Galindo in Dymek 2016Dovgan et al. 2017). Elektroporacijo uporabljamo tudi v medicini (Miklavčič et al. 2010Yarmush et al. 2014), in sicer pri elektrokemoterapiji (Miklavčič et al. 2012Mali et al. 2013Cadossi et al. 2014Miklavčič et al. 2014Campana et al. 2014SerÅ”a et al. 2015), netermičnem odstranjevanju tkiva z ireverzibilno elektroporacijo (Davalos et al. 2005Garcia et al. 2010JosĆ© et al. 2012Cannon et al. 2013Scheffer et al. 2014bJiang et al. 2015aRossmeisl et al. 2015), genski terapiji (Golzio et al. 2002Vasan et al. 2011Gothelf in Gehl 2012Calvet et al. 2014Heller in Heller 2015Trimble et al. 2015) in vnosu učinkovin v kožo in skoznjo (Denet et al. 2004Zorec et al. 2013b). Pri genski terapiji vnesemo v celice plazmide, v katerih je zapisana sinteza določenega proteina, ki lahko spremeni bioloÅ”ko funkcijo celice (Aihara in Miyazaki 1998Heller in Heller 2015). Z elektroporacijo poviÅ”amo varnost genske terapije, saj se izognemo uporabi virusov in kemikalij. Mehanizmi genske terapije z elektroporacijo Å”e niso popolnoma pojasnjeni, osnovni koraki so opisani v literaturi (Rosazza et al. 2016). Z elektroporacijo lahko zlivamo različne celice, s čimer pridobivamo celice, ki proizvajajo monoklonska protitelesa ali inzulin (Ramos in TeissiĆ© 2000Trontelj et al. 2008Rems et al. 2013). V doktorski disertaciji sem se osredotočila na uporabo elektroporacije v medicini, predvsem pri elektrokemoterapiji, netermičnem odstranjevanju tkiva z ireverzibilno elektroporacijo in pri vnosu učinkovin v kožo in skoznjo je, zato so ti trije posegi podrobneje opisani v naslednjem poglavju. Medicinski posegi z elektroporacijo ā€“ elektrokemoterapija, netermično odstranjevanje tkiva z ireverzibilno elektroporacijo in vnos učinkovin v kožo in skoznjo Elektrokemoterapija je kombinacija kemoterapije in električnih pulzov, dovedenih neposredno na tarčno tkivo. Električni pulzi povečajo prepustnost celične membrane za kemoterapevtike, zato povečamo učinkovitost zdravljenja, obenem pa zmanjÅ”amo dovedeno dozo kemoterapevtika in omilimo stranske učinke. Celoten tumor mora biti pokrit z dovolj visokim električnim poljem, da povečamo prepustnost vseh tumorskih celic (Miklavčič et al. 2006a), zagotoviti pa moramo tudi dovolj visoko koncentracijo kemoterapevtika znotraj tumorja (Miklavčič et al. 2014). OkoliÅ”ko tkivo ne sme biti uničeno, torej mora biti električno polje okoli tumorja pod mejo za ireverzibilno elektroporacijo. Pri elektrokemoterapiji običajno dovajamo osem pulzov dolžine 100 Ī¼s s ponavljalno frekvenco 1 Hz. S poskusi določena meja za poviÅ”anje prepustnosti tumorskega tkiva je 0,4 kV/cm (Miklavčič et al. 2010). Osem pulzov je bilo določenih kot optimalno Å”tevilo pulzov (Marty et al. 2006Mir et al. 2006), večje Å”tevilo dovedenih pulzov namreč že zmanjÅ”uje preživetje (Dermol in Miklavčič 2015). Za zdravljenje tumorjev z elektrokemoterapijo so bili definirani standardni postopki (angl. standard operating procedures) (Marty et al. 2006Mir et al. 2006), kjer so glede na Å”tevilo tumorjev, njihovo velikost in lokacijo (na koži ali pod kožo) določeni tip elektrod, kemoterapevtik, anestezija in način dovajanja kemoterapevtika. Kemoterapevtik lahko dovedemo lokalno ali sistemsko. V elektrokemoterapiji oz. terapiji z električnimi pulzi sta najbolj razÅ”irjena kemoterapevtika cisplatin in bleomicin. Z elektrokemoterapijo je možno zdraviti tudi globlje ležeče tumorje (Miklavčič et al. 2010Pavliha et al. 2013Edhemović et al. 2014Miklavčič in Davalos 2015). V zadnjem času se uveljavlja tudi uničevanje tumorskih celic z visokimi koncentracijami kalcija in električnimi pulzi (Frandsen et al. 2015Frandsen et al. 2016Frandsen et al. 2017). Pri elektrokemoterapiji se pojavijo Å”e dodatni učinki, ki poviÅ”ajo učinkovitost elektroporacije. Vazokonstrikcija zmanjÅ”a spiranje kemoterapevtika iz tumorja in s tem ohranja visoko koncentracijo kemoterapevtika v tumorju, obenem se zmanjÅ”a pretok krvi skozi tumor, kar povzroči hipoksijo in pomanjkanje hranilnih snovi (Mir 2006SerÅ”a et al. 2008). Elektrokemoterapija sproži tudi odziv imunskega sistema, ki nato odstrani preostale tumorske celice (SerÅ”a et al. 2015). Z ireverzibilno elektroporacijo netermično odstranjujemo tumorje brez uporabe kemoterapevtika (Jiang et al. 2015a). Tako se popolnoma izognemo stranskim učinkom kemoterapevtikov, vendar na račun več dovedene energije in posledično Joulovega gretja. Pri ireverzibilni elektroporaciji dovajamo več (okoli 90) električnih pulzov, dolgih od 50 Ī¼s do 100 Ī¼s, s ponavljalno frekvenco 1 Hz. Dovedeno električno polje je v rangu nekaj kV/cm, kar je dosti več kot pri elektrokemoterapiji. Pri ireverzibilni elektroporaciji lahko z visoko natančnostjo odstranimo želeno tkivo ā€“ območje med uničenim in nepoÅ”kodovanim tkivom je Å”iroko le nekaj premerov celic (Rubinsky et al. 2007). Za odstranjevanje tumorjev tradicionalno uporabljamo termične metode (Hall et al. 2014) ā€“ radiofrekvenčno odstranjevanje in odstranjevanje s tekočim duÅ”ikom, kjer tkivo uničujemo z visoko oz. z nizko temperaturo. Prednost ireverzibilne elektroporacije pred uveljavljenimi termičnimi metodami je krajÅ”i čas zdravljenja, izognemo se učinkom hlajenja oz. gretja tkiva zaradi bližine žil (Golberg et al. 2015), pri čemer ostanejo okoliÅ”ke pomembne strukture (žile, živci) nedotaknjene (Jiang et al. 2015a). Tudi pri ireverzibilni elektroporaciji je v dokončno odstranitev tumorskih celic vpleten imunski sistem (Neal et al. 2013). Pri elektrokemoterapiji in ireverzibilni elektroporaciji se zaradi daljÅ”ih pulzov in ponavljalne frekvence 1 Hz pojavljajo težave zaradi krčenja miÅ”ic (Miklavčič et al. 2005), bolečine med dovajanjem pulzov, heterogenosti električnih lastnosti tkiv v tem frekvenčnem področju ter zaradi možnosti srčnih aritmij (Ball et al. 2010). Bolečini in krčenju miÅ”ic se lahko izognemo, če pulze dovajamo z viÅ”jo frekvenco, npr. 5 kHz (Županič et al. 2007SerÅ”a et al. 2010). Srčnim aritmijam se izognemo tako, da s sinhroniziramo dovedene električne pulze z električno aktivnostjo srčne miÅ”ice (Mali et al. 2008Deodhar et al. 2011aMali et al. 2015). Bolečini, krčenju miÅ”ic in heterogenosti električnih lastnosti tkiv se lahko izognemo z dovajanjem 1 Ī¼s bipolarnih pulzov (Arena et al. 2011Arena in Davalos 2012Sano et al. 2015). V zadnjem času so se pojavile tudi metode, s katerimi so vnos barvil v celico dosegli brezkontaktno s t. i. magnetoporacijo (Chen et al. 2010Towhidi et al. 2012Kardos in Rabussay 2012Novickij et al. 2015Kranjc et al. 2016Novickij et al. 2017bNovickij et al. 2017a). Elektroporacijo lahko uporabljamo ne le za zdravljenje tumorjev, temveč tudi za vnos učinkovin v kožo in skoznjo. Vnos učinkovin skozi kožo je neinvaziven, poleg tega pa se izognemo degradaciji učinkovin pri prehodu skozi prebavni trakt. Skozi kožo lahko preide le malo molekul, zato uporabljamo različne metode za povečanje prehoda učinkovin ā€“ iontoforezo, radiofrekvenčno mikroablacijo, laser, mikroigle, ultrazvok in elektroporacijo (Zorec et al. 2013b). Proces elektroporacije kože je slabo razumljen. Predpostavljamo, da pri dovajanju visokonapetostnih električnih pulzov v roženi plasti nastanejo lokalna transportna območja, kjer sta poviÅ”ani električna prevodnost in prepustnost (Pliquett et al. 1996Pliquett et al. 1998Pliquett et al. 1998PavÅ”elj in Miklavčič 2008a). Skozi lokalna transportna območja lahko nato učinkovine Å”e nekaj ur po dovedenih pulzih vstopajo skozi kožo v krvni obtok (Zorec et al. 2013a). Gostota teh območij je odvisna od električnega polja v koži ā€“ viÅ”je električno polje jih povzroči več. Velikost lokalnih transportnih območij je odvisna od trajanja pulza. Med samim pulzom se zaradi Joulovega gretja topijo lipidi v roženi plasti, kar povzroči njihovo Å”irjenje (Pliquett et al. 1996Prausnitz et al. 1996Pliquett et al. 1998Weaver et al. 1999Vanbever et al. 1999Gowrishankar et al. 1999b). Načrtovanje posegov elektrokemoterapije in netermičnega odstranjevanja tkiva z ireverzibilno elektroporacijo Pri zdravljenju tumorjev z elektroporacijo lahko uporabimo standardne oblike in postavitve elektrod z že določenimi parametri električnih pulzov (Marty et al. 2006Mir et al. 2006Campana et al. 2014). Če zdravimo velike tumorje ali tumorje nepravilnih oblik, ki pogosto ležijo globlje, s standardno postavitvijo elektrod ne moremo zagotoviti ustrezne pokritosti tumorja z dovolj visokim električnim poljem. V tem primeru lahko elektrode med samim posegom večkrat premaknemo ali pa prilagodimo njihovo Å”tevilo in postavitev. Pri tem moramo prej pripraviti načrt posega (Kos et al. 2010Miklavčič et al. 2010Pavliha et al. 2012Linnert et al. 2012Edhemović et al. 2014). V njem zagotovimo, da bo cel tumor izpostavljen dovolj visokemu električnemu polju (Miklavčič et al. 2006a), obenem pa Å”koda na okoliÅ”kem tkivu minimalna. Načrtovanje posega poteka v več korakih: 1. zajem medicinskih slik (računalniÅ”ka tomografija, magnetna resonanca) tumorja in okoliÅ”kega tkiva2. obdelava slik3. razgradnja slik in določitev geometrije tkiva4. vzpostavitev tridimenzionalnega modela5. optimizacija postavitve elektrod glede na obliko in velikost tumorja6. izdelava modela elektroporacije (izračun električnega polja in spremembe električne prevodnosti tkiva)7. optimizacija napetosti med elektrodami in položaja elektrod (Pavliha et al. 2012). Na sliki 1 lahko vidimo izračunano električno polje v tumorju in okoliÅ”kem tkivu pri eni izmed možnih postavitev elektrod

    Mathematical modelling of cell membrane permeabilization and cell survival

    Full text link
    V magistrski nalogi sem se ukvarjala z matematičnim modeliranjem permeabilizacije in preživetja celic. Pri elektrokemoterapiji in netermični ablaciji tkiva z ireverzibilno elektroporacijo pred posegom pripravimo načrt posega, kjer predvidimo uničeno območje tkiva. Za mejo med živim in uničenim tkivom uporabljamo določene vrednosti električnega polja. RealnejŔe načrte posega lahko dosežemo z uporabo matematičnih modelov, s katerimi napovemo od 0 % do 100 % uničenje. Na eksperimentalne podatke smo prilegali matematične modele permeabilizacije in preživetja z metodo nelinearnih najmanjŔih kvadratov. Za modeliranje permeabilizacije je najboljŔa Gompertzova krivulja. Pri modeliranju preživetja celic v odvisnosti od električnega polja sta najbolj primerna Peleg-Fermijev in logistični model, v odvisnosti od časa pa logistični model. Zdi se, da ima modeliranje deleža preživelih oz. permeabiliziranih celic potencial za uporabo v načrtovanju posegov.In this thesis I investigated mathematical modeling of cell membrane permeabilization and cell survival. When treating tumors with electrochemotherapy or non-thermal irreversible electroporaton as a method of tissue ablation we first prepare treatment plan. Currently we use a specific value of electric field to predict which cells will be destroyed and which will be not. We can predict the extent of tissue destruction more realistically using mathematical models of permeabilization and survival. Using these models the percentage of destroyed cells takes all the values between 0% and 100%. Using non-linear least squares method we fit mathematical models of permeabilization and survival. We evaluated goodness-of-fit using R^2. We identified Gompertz curve as the most suitable for modeling cell permeabilization. We found Peleg-Fermi and logistic mathematical model to be the most suitable for modeling cell survival. So far it seems possible to use mathematical models in treatment planning

    Guest Editorā€™s Foreword

    No full text

    Bacterial nanocellulose hydrogel for the production of 3D printed foils as an alternative to synthetic polymers in the field of packaging

    Full text link
    Polimeri so postali pomemben sestavni del vsakdanjega življenja, vendar je vecina trenutno uporabljenih in proizvedenih polimerov izdelanih iz naftne osnove, kar predstavlja okoljski problem predvsem pri izdelkih, ki se hitro zavržejo. Zato se danes razvoj embalaže osredotoca na trajnostne materiale kot alternativo sinteticnim. Naravni materiali, kot je celuloza, so relativno poceni, netoksicni in trpežni, zato se uporabljajo v razlicnih aplikacijah, vkljucno z embalažo. Nanoceluloza, relativno nov naraven material, ima edinstvene lastnosti, kot so visoka trdnost, nizka teža in prosojnost, zaradi cesar je priljubljena v razlicnih aplikacijah, kot so embalaža, tekstil, papir, medicina, gradbeniŔtvo in elektronika. Tehnologije 3D tiskanja so postale pomemben del industrijskih in komercialnih procesov ter omogocajo inovativne ideje in funkcionalnosti, kot so 3D tisk funkcionalnih vitalnih organov in tkiv, protez, brezpilotnih letal, hrane in hiŔ. Osnovni namen magistrskega dela je bil razvoj hidrogela bakterijske nanoceluloze s primernimi reoloŔkimi lastnostmi za 3D tisk polimernih folij. Tehnologije 3D tiskanja so postale pomemben del industrijskih in komercialnih procesov ter omogocajo realizacijo inovativnih idej in funkcionalnosti. Razvoj ekonomicnega 3D biotiskalnika je bil pomemben del raziskav in cilj magistrskega dela. Rezultati raziskav so pokazali, da so vsi izdelani hidrogeli iz bakterijske nanoceluloze in kationskega Ŕkroba primerni za 3D tisk, pri cemer je najboljŔi vzorec vseboval najvecjo koncentracijo kationskega Ŕkroba. 3D tiskane folije so bile homogene in mocne, vendar so bile folije z vecjo koncentracijo kationskega Ŕkroba nekoliko krhkejŔe. Vse folije so bile precej transparentne z nesijajno povrŔino in so ohranile slabŔo omocljivost z vodo. Razviti 3D tiskalnik predstavlja uporabno orodje za 3D tiskanje hidrogelov za razlicne aplikacije. Bakterijska nanoceluloza kot stranski produkt proizvodnje kisa predstavlja optimalno alternativo sinteticnim polimerom, saj je trajnostna ter prijazna tako okolju kot organizmom. S tega staliŔca je raziskava dokazala možnost uporabe bakterijske nanoceluloze kot vecinske komponente biofilamenta.Polymers have become an important part of everyday life today. Still, most currently used and produced polymers are made from petroleum, which poses an environmental problem, especially for quickly discarded products. Therefore, packaging development today focuses on sustainable materials as an alternative to synthetics. Natural materials such as cellulose are relatively inexpensive, non-toxic, and durable, making them suitable for various applications, including packaging. Nanocellulose, a relatively new natural material, has unique properties such as high strength, low weight, and transparency, making it popular in various applications such as packaging, textiles, paper, medicine, construction, and electronics. 3D printing technologies have become integral to industrial and commercial processes, enabling innovative ideas and functionalities such as 3D printing of functional vital organs and tissues, prosthetics, unmanned aircraft, food, and houses. The main purpose of the master\u27s thesis was to develop a hydrogel of bacterial nanocellulose with suitable rheological properties for the 3D printing of polymer films. 3D printing technologies have become an important part of industrial and commercial processes, enabling the realization of innovative ideas and functionalities. Developing an economical 3D bioprinter was an important part of the research and the goal of the master\u27s thesis. The research results showed that all hydrogels made from bacterial nanocellulose and cationic starch were suitable for 3D printing, with the best sample containing the highest concentration of cationic starch. The 3D printed films were homogeneous and strong, although the films with a higher concentration of cationic starch were slightly more fragile. All films were quite transparent with a non-glossy surface and retained poor water wettability. The developed 3D printer represents a useful tool for 3D printing hydrogels for various applications. Bacterial nanocellulose, as a by-product of vinegar production, provides an optimal alternative to synthetic polymers as it is sustainable and environmentally friendly. From this perspective, the research has demonstrated the possibility of using bacterial nanocellulose as the main component of a biofilament
    • ā€¦
    corecore