254 research outputs found

    Nurse stress in hospital and satellite haemodialysis units

    Full text link
    Focus groups of nurses from both in-centre and satellite dialysis units were undertaken followed by questionnaires. The In-centre nursing staff rated the busy-ness of the unit as the maximum stress. The mostly notable stressor for the staff at the satellite unit related to patient behaviour and the perceived unrealistic expectations of the patient followed by patients arriving unwell at the unit.Nurses suffer stress on a daily basis in both in-centre and satellite dialysis units. The major stressors differ from in-centre to satellite dialysis units.<br /

    Arbitrage and deflators in illiquid markets

    Full text link
    This paper presents a stochastic model for discrete-time trading in financial markets where trading costs are given by convex cost functions and portfolios are constrained by convex sets. The model does not assume the existence of a cash account/numeraire. In addition to classical frictionless markets and markets with transaction costs or bid-ask spreads, our framework covers markets with nonlinear illiquidity effects for large instantaneous trades. In the presence of nonlinearities, the classical notion of arbitrage turns out to have two equally meaningful generalizations, a marginal and a scalable one. We study their relations to state price deflators by analyzing two auxiliary market models describing the local and global behavior of the cost functions and constraints

    Noise filtering and nonparametric analysis of microarray data underscores discriminating markers of oral, prostate, lung, ovarian and breast cancer

    Get PDF
    BACKGROUND: A major goal of cancer research is to identify discrete biomarkers that specifically characterize a given malignancy. These markers are useful in diagnosis, may identify potential targets for drug development, and can aid in evaluating treatment efficacy and predicting patient outcome. Microarray technology has enabled marker discovery from human cells by permitting measurement of steady-state mRNA levels derived from thousands of genes. However many challenging and unresolved issues regarding the acquisition and analysis of microarray data remain, such as accounting for both experimental and biological noise, transcripts whose expression profiles are not normally distributed, guidelines for statistical assessment of false positive/negative rates and comparing data derived from different research groups. This study addresses these issues using Affymetrix HG-U95A and HG-U133 GeneChip data derived from different research groups. RESULTS: We present here a simple non parametric approach coupled with noise filtering to identify sets of genes differentially expressed between the normal and cancer states in oral, breast, lung, prostate and ovarian tumors. An important feature of this study is the ability to integrate data from different laboratories, improving the analytical power of the individual results. One of the most interesting findings is the down regulation of genes involved in tissue differentiation. CONCLUSIONS: This study presents the development and application of a noise model that suppresses noise, limits false positives in the results, and allows integration of results from individual studies derived from different research groups

    Reovirus-Induced Apoptosis in the Intestine Limits Establishment of Enteric Infection

    Get PDF
    Several viruses induce intestinal epithelial cell death during enteric infection. However, it is unclear whether proapoptotic capacity promotes or inhibits replication in this tissue. We infected mice with two reovirus strains that infect the intestine but differ in the capacity to alter immunological tolerance to new food antigen. Infection with reovirus strain T1L, which induces an inflammatory immune response to fed antigen, is prolonged in the intestine, whereas T3D-RV, which does not induce this response, is rapidly cleared from the intestine. Compared with T1L, T3D-RV infection triggered apoptosis of intestinal epithelial cells and subsequent sloughing of dead cells into the intestinal lumen. We conclude that the infection advantage of T1L derives from its capacity to subvert host restriction by epithelial cell apoptosis, providing a possible mechanism by which T1L enhances inflammatory signals during antigen feeding. Using a panel of T1L × T3D-RV reassortant viruses, we identified the viral M1 and M2 gene segments as determinants of reovirus-induced apoptosis in the intestine. Expression of the T1L M1 and M2 genes in a T3D-RV background was sufficient to limit epithelial cell apoptosis and enhance viral infection to levels displayed by T1L. These findings define additional reovirus gene segments required for enteric infection of mice and illuminate the antiviral effect of intestinal epithelial cell apoptosis in limiting enteric viral infection. Viral strain-specific differences in the capacity to infect the intestine may be useful in identifying viruses capable of ameliorating tolerance to fed antigen in autoimmune conditions like celiac disease

    The oncolytic effect in vivo of reovirus on tumour cells that have survived reovirus cell killing in vitro

    Get PDF
    The use of oncolytic viruses has received considerable attention in recent years and many viruses have proved to be effective against a variety of cancer models and a few are currently being used in clinical trials. However, the possible emergence and outcome of virus-resistant tumour cells has not been addressed. We previously reported the effective use of reovirus against lymphoid malignancies, including the Burkitt's lymphoma cell line Raji. Here we isolated in vitro persistently infected (PI) Raji cells, and cells ‘cured' of persistent reovirus infection (‘cured' cells). Both PI and cured Raji cells resisted reovirus infection and cell killing in vitro. In vivo, the PI cells were non-tumorigenic in SCID mice, but cured cells regained the parental cells' ability to form tumours. Tumour xenografts from the cured cells, however, were highly susceptible to reovirus oncolysis in vivo. This susceptibility was due to the proteolytic environment within tumours that facilitates reovirus infection and cell killing. Our results show that persistent infection by reovirus impedes tumour development and that although PI cells cleared of reovirus are tumorigenic, they are killed upon rechallenge with reovirus. Both the PI and cured states are therefore not likely to be significant barriers to reovirus oncolytic therapy

    Specific sequences within arginine–glycine-rich domains affect mRNA-binding protein function

    Get PDF
    The discovery of roles for arginine methylation in intracellular transport and mRNA splicing has focused attention on the methylated arginine–glycine (RG)-rich domains found in many eukaryotic RNA-binding proteins. Sequence similarity among these highly repetitive RG domains, combined with interactions between RG-rich proteins, raises the question of whether these regions are general interaction motifs or whether there is specificity within these domains. Using the essential Saccharomyces cerevisiae mRNA-binding protein Npl3 (ScNpl3) as a model system, we first tested the importance of the RG domain for protein function. While Npl3 lacking the RG domain could not support growth of cells lacking Npl3, surprisingly, expression of the RG domain alone supported partial growth of these cells. To address the specificity of this domain, we created chimeric forms of ScNpl3 with RG-rich domains of S. cerevisiae nucleolar proteins, Gar1 and Nop1 (ScGar1, ScNop1), or of the Candida albicans Npl3 ortholog (CaNpl3). Whereas the CaNpl3 RG chimeric protein retained nearly wild-type function in S. cerevisiae, the ScGar1 and ScNop1 RG domains significantly reduced Npl3 function and self-association, indicating RG domain specificity. Nuclear localization of Npl3 also requires specific RG sequences, yet heterologous RG domains allow similar modulation of Npl3 transport by arginine methylation

    Impacts of climate change on agricultural production in arid areas (ICCAP) -The possible effect of climatic changes on the irrigated agriculture of Seyhan Basin-

    Get PDF
    We present a new framework for modelling the complexities of food and water security under globalisation. The framework sets out a method to capture regional and sectoral interdependencies and cross-scale feedbacks within the global food system that contribute to emergent water use patterns. The framework integrates aspects of existing models and approaches in the fields of hydrology and integrated assessment modelling. The core of the framework is a multi-agent network of city agents connected by infrastructural trade networks. Agents receive socio-economic and environmental constraint information from integrated assessment models and hydrological models respectively and simulate complex, socio-environmental dynamics that operate within those constraints. The emergent changes in food and water resources are aggregated and fed back to the original models with minimal modification of the structure of those models. It is our conviction that the framework presented can form the basis for a new wave of decision tools that capture complex socio-environmental change within our globalised world. In doing so they will contribute to illuminating pathways towards a sustainable future for humans, ecosystems and the water they share

    Efficacy of a novel online integrated treatment for problem gambling and tobacco smoking: Results of a randomized controlled trial

    Full text link
    Background and aimsProblem gambling and tobacco use are highly comorbid among adults. However, there are few treatment frameworks that target both gambling and tobacco use simultaneously (i.e., an integrated approach), while also being accessible and evidence-based. The aim of this two-arm open label RCT was to examine the efficacy of an integrated online treatment for problem gambling and tobacco use.MethodsA sample of 209 participants (Mage_{age} = 37.66, SD = 13.81; 62.2% female) from North America were randomized into one of two treatment conditions (integrated [n = 91] or gambling only [n = 118]) that lasted for eight weeks and consisted of seven online modules. Participants completed assessments at baseline, after treatment completion, and at 24-week follow-up.ResultsWhile a priori planned generalized linear mixed models showed no condition differences on primary (gambling days, money spent, time spent) and secondary outcomes, both conditions did appear to significantly reduce problem gambling and smoking behaviours over time. Post hoc analyses showed that reductions in smoking and gambling craving were correlated with reductions in days spent gambling, as well as with gambling disorder symptoms. Relatively high (versus low) nicotine replacement therapy use was associated with greater reductions in gambling behaviours in the integrated treatment condition.Discussion and conclusionsWhile our open label RCT does not support a clear benefit of integrated treatment, findings suggest that changes in smoking and gambling were correlated over time, regardless of treatment condition, suggesting that more research on mechanisms of smoking outcomes in the context of gambling treatment may be relevant

    The Role of Immunological Synapse in Predicting the Efficacy of Chimeric Antigen Receptor (CAR) Immunotherapy

    Get PDF
    Chimeric Antigen Receptor (CAR) immunotherapy utilizes genetically-engineered immune cells that express a unique cell surface receptor that combines tumor antigen specificity with immune cell activation. In recent clinical trials, the adoptive transfer of CAR-modified immune cells (including CAR-T and CAR-NK cells) into patients has been remarkably successful in treating multiple refractory blood cancers. To improve safety and efficacy, and expand potential applicability to other cancer types, CARs with different target specificities and sequence modifications are being developed and tested by many laboratories. Despite the overall progress in CAR immunotherapy, conventional tools to design and evaluate the efficacy and safety of CAR immunotherapies can be inaccurate, time-consuming, costly, and labor-intensive. Furthermore, existing tools cannot always determine how responsive individual patients will be to a particular CAR immunotherapy. Recent work in our laboratory suggests that the quality of the immunological synapse (IS) can accurately predict CAR-modified cell efficacy (and toxicity) that can correlate with clinical outcomes. Here we review current efforts to develop a Synapse Predicts Efficacy (SPE) system for easy, rapid and cost-effective evaluation of CAR-modified immune cell immunotherapy. Ultimately, we hypothesize the conceptual basis and clinical application of SPE will serve as an important parameter in evaluating CAR immunotherapy and significantly advance precision cancer immunotherapy. [MediaObject not available: see fulltext.] Graphical abstract: Graphic abstract for manuscript CCAS-D-20-00136 by Liu, D., et al., 'The Role of Immunological Synapse in Predicting the Efficacy of Chimeric Antigen Receptor (CAR) Immunotherapy". The various branches of evaluating cancer immunotherapy metaphorically represented as a Rubik's cube. The development of a novel approach to predict the effectiveness of Chimeric Antigen Receptor (CAR)-modified cells by quantifying the quality of CAR IS will introduce a new parameter to the rapidly expanding field of cancer immunotherapy. Currently, no single parameter can predict the clinical outcome or efficacy of a specific type of CAR-modified cell. IS quality will serve as a quantifiable measure to evaluate CAR products and can be used in conjunction with other conventional parameters to form a composite clinical predictor. Much like a Rubik's cube has countless configurations, several methods and combinations of clinical metrics have arisen for evaluating the ability of a given immunotherapeutic strategy to treat cancer. The quality of IS depicting cancer immunotherapy is metaphorically expressed as a Rubik's cube. Each face/color represents one aspect of cancer therapy. Each grid in one face indicates one factor within that aspect of cancer therapy. For example, the green color represents the tumor microenvironment, and one out of the nine grids in the green color indicates suppressor cells (suppressors in green). Changes in one factor may completely alter the entire strategy of cancer therapy. However, the quality of IS (illuminated center red grid) makes the effectiveness of CAR immunotherapy predictable
    corecore