405 research outputs found

    Arbitrage and deflators in illiquid markets

    Full text link
    This paper presents a stochastic model for discrete-time trading in financial markets where trading costs are given by convex cost functions and portfolios are constrained by convex sets. The model does not assume the existence of a cash account/numeraire. In addition to classical frictionless markets and markets with transaction costs or bid-ask spreads, our framework covers markets with nonlinear illiquidity effects for large instantaneous trades. In the presence of nonlinearities, the classical notion of arbitrage turns out to have two equally meaningful generalizations, a marginal and a scalable one. We study their relations to state price deflators by analyzing two auxiliary market models describing the local and global behavior of the cost functions and constraints

    Serotype-specific differences in inhibition of reovirus infectivity by human-milk glycans are determined by viral attachment protein σ1

    Get PDF
    AbstractHuman milk contains many bioactive components, including secretory IgA, oligosaccharides, and milk-associated proteins. We assessed the antiviral effects of several components of milk against mammalian reoviruses. We found that glucocerebroside (GCB) inhibited the infectivity of reovirus strain type 1 Lang (T1L), whereas gangliosides GD3 and GM3 and 3′-sialyllactose (3SL) inhibited the infectivity of reovirus strain type 3 Dearing (T3D). Agglutination of erythrocytes mediated by T1L and T3D was inhibited by GD3, GM3, and bovine lactoferrin. Additionally, α-sialic acid, 3SL, 6′-sialyllactose, sialic acid, human lactoferrin, osteopontin, and α-lactalbumin inhibited hemagglutination mediated by T3D. Using single-gene reassortant viruses, we found that serotype-specific differences segregate with the gene encoding the viral attachment protein. Furthermore, GD3, GM3, and 3SL inhibit T3D infectivity by blocking binding to host cells, whereas GCB inhibits T1L infectivity post-attachment. These results enhance an understanding of reovirus cell attachment and define a mechanism for the antimicrobial activity of human milk

    Topoisomerase II inhibitors induce DNA damage-dependent interferon responses circumventing Ebola virus immune evasion

    Get PDF
    Ebola virus (EBOV) protein VP35 inhibits production of interferon alpha/beta (IFN) by blocking RIG-I-like receptor signaling pathways, thereby promoting virus replication and pathogenesis. A high-throughput screening assay, developed to identify compounds that either inhibit or bypass VP35 IFN-antagonist function, identified five DNA intercalators as reproducible hits from a library of bioactive compounds. Four, including doxorubicin and daunorubicin, are anthracycline antibiotics that inhibit topoisomerase II and are used clinically as chemotherapeutic drugs. These compounds were demonstrated to induce IFN responses in an ATM kinase-dependent manner and to also trigger the DNA-sensing cGAS-STING pathway of IFN induction. These compounds also suppress EBOV replication in vitro and induce IFN in the presence of IFN-antagonist proteins from multiple negative-sense RNA viruses. These findings provide new insights into signaling pathways activated by important chemotherapy drugs and identify a novel therapeutic approach for IFN induction that may be exploited to inhibit RNA virus replication

    Chemical class specificity using self-assembled monolayers on SAW devices

    Get PDF
    We have studied the chemical selectivity and sensitivity of surface acoustic wave (SAW) sensors covered by (COO{sup {minus}}){sub 2}/Cu{sup 2+}-terminated interfaces by examining the response of self-assembled monolayer (SAM) films formed from the solution phase for 36, 84, and 180 h adsorption times. These organomercaptan SAMs were prepared on thin-film Au surfaces having variable, controlled grain size. The SAW response from the carboxylate coordinated Cu{sup 2+}-terminated SAM is compared to that from methyl-terminated SAM, as these films interact with a vapor-phase organophosphonate analyte and the vapors of common organic solvents. Results have implications for designing and reliably fabricating chemical sensors that respond to specific organic analytes

    JAM-A regulates permeability and inflammation in the intestine in vivo

    Get PDF
    Recent evidence has linked intestinal permeability to mucosal inflammation, but molecular studies are lacking. Candidate regulatory molecules localized within the tight junction (TJ) include Junctional Adhesion Molecule (JAM-A), which has been implicated in the regulation of barrier function and leukocyte migration. Thus, we analyzed the intestinal mucosa of JAM-A–deficient (JAM-A−/−) mice for evidence of enhanced permeability and inflammation. Colonic mucosa from JAM-A−/− mice had normal epithelial architecture but increased polymorphonuclear leukocyte infiltration and large lymphoid aggregates not seen in wild-type controls. Barrier function experiments revealed increased mucosal permeability, as indicated by enhanced dextran flux, and decreased transepithelial electrical resistance in JAM-A−/− mice. The in vivo observations were epithelial specific, because monolayers of JAM-A−/− epithelial cells also demonstrated increased permeability. Analyses of other TJ components revealed increased expression of claudin-10 and -15 in the colonic mucosa of JAM-A−/− mice and in JAM-A small interfering RNA–treated epithelial cells. Given the observed increase in colonic inflammation and permeability, we assessed the susceptibility of JAM-A−/− mice to the induction of colitis with dextran sulfate sodium (DSS). Although DSS-treated JAM-A−/− animals had increased clinical disease compared with controls, colonic mucosa showed less injury and increased epithelial proliferation. These findings demonstrate a complex role of JAM-A in intestinal homeostasis by regulating epithelial permeability, inflammation, and proliferation

    The oncolytic effect in vivo of reovirus on tumour cells that have survived reovirus cell killing in vitro

    Get PDF
    The use of oncolytic viruses has received considerable attention in recent years and many viruses have proved to be effective against a variety of cancer models and a few are currently being used in clinical trials. However, the possible emergence and outcome of virus-resistant tumour cells has not been addressed. We previously reported the effective use of reovirus against lymphoid malignancies, including the Burkitt's lymphoma cell line Raji. Here we isolated in vitro persistently infected (PI) Raji cells, and cells ‘cured' of persistent reovirus infection (‘cured' cells). Both PI and cured Raji cells resisted reovirus infection and cell killing in vitro. In vivo, the PI cells were non-tumorigenic in SCID mice, but cured cells regained the parental cells' ability to form tumours. Tumour xenografts from the cured cells, however, were highly susceptible to reovirus oncolysis in vivo. This susceptibility was due to the proteolytic environment within tumours that facilitates reovirus infection and cell killing. Our results show that persistent infection by reovirus impedes tumour development and that although PI cells cleared of reovirus are tumorigenic, they are killed upon rechallenge with reovirus. Both the PI and cured states are therefore not likely to be significant barriers to reovirus oncolytic therapy

    Specific sequences within arginine–glycine-rich domains affect mRNA-binding protein function

    Get PDF
    The discovery of roles for arginine methylation in intracellular transport and mRNA splicing has focused attention on the methylated arginine–glycine (RG)-rich domains found in many eukaryotic RNA-binding proteins. Sequence similarity among these highly repetitive RG domains, combined with interactions between RG-rich proteins, raises the question of whether these regions are general interaction motifs or whether there is specificity within these domains. Using the essential Saccharomyces cerevisiae mRNA-binding protein Npl3 (ScNpl3) as a model system, we first tested the importance of the RG domain for protein function. While Npl3 lacking the RG domain could not support growth of cells lacking Npl3, surprisingly, expression of the RG domain alone supported partial growth of these cells. To address the specificity of this domain, we created chimeric forms of ScNpl3 with RG-rich domains of S. cerevisiae nucleolar proteins, Gar1 and Nop1 (ScGar1, ScNop1), or of the Candida albicans Npl3 ortholog (CaNpl3). Whereas the CaNpl3 RG chimeric protein retained nearly wild-type function in S. cerevisiae, the ScGar1 and ScNop1 RG domains significantly reduced Npl3 function and self-association, indicating RG domain specificity. Nuclear localization of Npl3 also requires specific RG sequences, yet heterologous RG domains allow similar modulation of Npl3 transport by arginine methylation
    corecore