4 research outputs found

    Acute administration of the olive constituent, oleuropein, combined with ischemic postconditioning increases myocardial protection by modulating oxidative defense

    Get PDF
    Oleuropein, one of the main polyphenolic constituents of olive, is cardioprotective against ischemia reperfusion injury (IRI). We aimed to assess the cardioprotection afforded by acute administration of oleuropein and to evaluate the underlying mechanism. Importantly, since antioxidant therapies have yielded inconclusive results in attenuating IRI-induced damage on top of conditioning strategies, we investigated whether oleuropein could enhance or imbed the cardioprotective manifestation of ischemic postconditioning (PostC). Oleuropein, given during ischemia as a single intravenous bolus dose reduced the infarct size compared to the control group both in rabbits and mice subjected to myocardial IRI. None of the inhibitors of the cardioprotective pathways, l-NAME, wortmannin and AG490, influence its infarct size limiting effects. Combined oleuropein and PostC cause further limitation of infarct size in comparison with PostC alone in both animal models. Oleuropein did not inhibit the calcium induced mitochondrial permeability transition pore opening in isolated mitochondria and did not increase cGMP production. To provide further insights to the different cardioprotective mechanism of oleuropein, we sought to characterize its anti-inflammatory potential in vivo. Oleuropein, PostC and their combination reduce inflammatory monocytes infiltration into the heart and the circulating monocyte cell population. Oleuropein's mechanism of action involves a direct protective effect on cardiomyocytes since it significantly increased their viability following simulated IRI as compared to non-treated cells. Οleuropein confers additive cardioprotection on top of PostC, via increasing the expression of the transcription factor Nrf-2 and its downstream targets in vivo. In conclusion, acute oleuropein administration during ischemia in combination with PostC provides robust and synergistic cardioprotection in experimental models of IRI by inducing antioxidant defense genes through Nrf-2 axis and independently of the classic cardioprotective signaling pathways (RISK, cGMP/PKG, SAFE)

    Noncompaction of the Ventricular Myocardium Is Associated with a De Novo Mutation in the β-Myosin Heavy Chain Gene

    Get PDF
    Noncompaction of the ventricular myocardium (NVM) is the morphological hallmark of a rare familial or sporadic unclassified heart disease of heterogeneous origin. NVM results presumably from a congenital developmental error and has been traced back to single point mutations in various genes. The objective of this study was to determine the underlying genetic defect in a large German family suffering from NVM. Twenty four family members were clinically assessed using advanced imaging techniques. For molecular characterization, a genome-wide linkage analysis was undertaken and the disease locus was mapped to chromosome 14ptel-14q12. Subsequently, two genes of the disease interval, MYH6 and MYH7 (encoding the α- and β-myosin heavy chain, respectively) were sequenced, leading to the identification of a previously unknown de novo missense mutation, c.842G>C, in the gene MYH7. The mutation affects a highly conserved amino acid in the myosin subfragment-1 (R281T). In silico simulations suggest that the mutation R281T prevents the formation of a salt bridge between residues R281 and D325, thereby destabilizing the myosin head. The mutation was exclusively present in morphologically affected family members. A few members of the family displayed NVM in combination with other heart defects, such as dislocation of the tricuspid valve (Ebstein's anomaly, EA) and atrial septal defect (ASD). A high degree of clinical variability was observed, ranging from the absence of symptoms in childhood to cardiac death in the third decade of life. The data presented in this report provide first evidence that a mutation in a sarcomeric protein can cause noncompaction of the ventricular myocardium

    Acute administration of the olive constituent, oleuropein, combined with ischemic postconditioning increases myocardial protection by modulating oxidative defense

    No full text
    Oleuropein, one of the main polyphenolic constituents of olive, is cardioprotective against ischemia reperfusion injury (IRI). We aimed to assess the cardioprotection afforded by acute administration of oleuropein and to evaluate the underlying mechanism. Importantly, since antioxidant therapies have yielded inconclusive results in attenuating IRI-induced damage on top of conditioning strategies, we investigated whether oleuropein could enhance or imbed the cardioprotective manifestation of ischemic postconditioning (PostC). Oleuropein, given during ischemia as a single intravenous bolus dose reduced the infarct size compared to the control group both in rabbits and mice subjected to myocardial IRI. None of the inhibitors of the cardioprotective pathways, L-NAME, wortmannin and AG490, influence its infarct size limiting effects. Combined oleuropein and PostC cause further limitation of infarct size in comparison with PostC alone in both animal models. Oleuropein did not inhibit the calcium induced mitochondrial permeability transition pore opening in isolated mitochondria and did not increase cGMP production. To provide further insights to the different cardioprotective mechanism of oleuropein, we sought to characterize its anti-inflammatory potential in vivo. Oleuropein, PostC and their combination reduce inflammatory monocytes infiltration into the heart and the circulating monocyte cell population. Oleuropein's mechanism of action involves a direct protective effect on cardiomyocytes since it significantly increased their viability following simulated IRI as compared to non-treated cells. Οleuropein confers additive cardioprotection on top of PostC, via increasing the expression of the transcription factor Nrf-2 and its downstream targets in vivo. In conclusion, acute oleuropein administration during ischemia in combination with PostC provides robust and synergistic cardioprotection in experimental models of IRI by inducing antioxidant defense genes through Nrf-2 axis and independently of the classic cardioprotective signaling pathways (RISK, cGMP/PKG, SAFE). © 2021 Elsevier Inc

    Novel correlations between the genotype and the phenotype of hypertrophic and dilated cardiomyopathy: results from the German Competence Network Heart Failure

    No full text
    Aims: Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) can both be due to mutations in the genes encoding {beta}-myosin heavy chain (MYH7) or cardiac myosin-binding protein C (MYBPC3). The aim of the present study was to determine the prevalence and spectrum of mutations in both genes in German HCM and DCM patients and to establish novel genotype-to-phenotype correlations. Methods and Results: Coding exons and intron flanks of the two genes MYH7 and MYBPC3 of 236 patients with HCM and 652 patients with DCM were sequenced by conventional and array-based means. Clinical records were established following standard protocols. Mutations were detected in 41 and 11% of the patients with HCM and DCM, respectively. Differences were observed in the frequency of splice site and frame-shift mutations in the gene MYBPC3, which occurred more frequently (P< 0.02, P< 0.001, respectively) in HCM than in DCM, suggesting that cardiac myosin-binding protein C haploinsufficiency predisposes to hypertrophy rather than to dilation. Additional novel genotype-to-phenotype correlations were found in HCM, among these a link between MYBPC3 mutations and a particularly large thickness of the interventricular septum (P= 0.04 vs. carriers of a mutation in MYH7). Interestingly, this correlation and a link between MYH7 mutations and a higher degree of mitral valve regurgitation held true for both HCM and DCM, indicating that the gene affected by a mutation may determine the magnitude of structural and functional alterations in both HCM and DCM. Conclusion: A large clinical-genetic study has unravelled novel genotype-to-phenotype correlations in HCM and DCM which warrant future investigation of both the underlying mechanisms and the prognostic use
    corecore