673 research outputs found

    Tau is central in the genetic Alzheimer-frontotemporal dementia spectrum

    Get PDF
    In contrast to the common and genetically complex senile form of Alzheimer's disease (AD), the molecular genetic dissection of inherited presenile dementias has given important mechanistic insights into the pathogenesis of degenerative brain disease. Here, we focus on recent genotype-phenotype correlative studies in presenile AD and the frontotemporal dementia (FTD) complex of disorders. Together, these studies suggest that AD and FTD are linked in a genetic spectrum of presenile degenerative brain disorders in which tau appears to be the central player

    Adult-onset congenital central hypoventilation syndrome due to PHOX2B mutation

    Get PDF
    Central hypoventilation in adult patients is a rare life-threatening condition characterised by the loss of automatic breathing, more pronounced during sleep. In most cases, it is secondary to a brainstem lesion or to a primary pulmonary, cardiac or neuromuscular disease. More rarely, it can be a manifestation of congenital central hypoventilation syndrome (CCHS). We here describe a 25-year-old woman with severe central hypoventilation triggered by analgesics. Genetic analysis confirmed the diagnosis of adult-onset CCHS caused by a heterozygous de novo poly-alanine repeat expansion of the PHOX2B gene. She was treated with nocturnal non-invasive ventilation. We reviewed the literature and found 21 genetically confirmed adult-onset CCHS cases. Because of the risk of deleterious respiratory complications, adult-onset CCHS is an important differential diagnosis in patients with central hypoventilation

    Aberrant lysosomal carbohydrate storage accompanies endocytic defects and neurodegeneration in Drosophila benchwarmer

    Get PDF
    Lysosomal storage is the most common cause of neurodegenerative brain disease in preadulthood. However, the underlying cellular mechanisms that lead to neuronal dysfunction are unknown. Here, we report that loss of Drosophila benchwarmer (bnch), a predicted lysosomal sugar carrier, leads to carbohydrate storage in yolk spheres during oogenesis and results in widespread accumulation of enlarged lysosomal and late endosomal inclusions. At the bnch larval neuromuscular junction, we observe similar inclusions and find defects in synaptic vesicle recycling at the level of endocytosis. In addition, loss of bnch slows endosome-to-lysosome trafficking in larval garland cells. In adult bnch flies, we observe age-dependent synaptic dysfunction and neuronal degeneration. Finally, we find that loss of bnch strongly enhances tau neurotoxicity in a dose-dependent manner. We hypothesize that, in bnch, defective lysosomal carbohydrate efflux leads to endocytic defects with functional consequences in synaptic strength, neuronal viability, and tau neurotoxicity

    Aspecten van recidief en stabiliteit na orthodontische therapie

    Get PDF

    HDAC6 is a bruchpilot deacetylase that facilitates neurotransmitter release

    Get PDF
    Presynaptic densities are specialized structures involved in synaptic vesicle tethering and neurotransmission; however, the mechanisms regulating their function remain understudied. In Drosophila, Bruchpilot is a major constituent of the presynaptic density that tethers vesicles. Here, we show that HDAC6 is necessary and sufficient for deacetylation of Bruchpilot. HDAC6 expression is also controlled by TDP-43, an RNA-binding protein deregulated in amyotrophic lateral sclerosis (ALS). Animals expressing TDP-43 harboring pathogenic mutations show increased HDAC6 expression, decreased Bruchpilot acetylation, larger vesicle-tethering sites, and increased neurotransmission, defects similar to those seen upon expression of HDAC6 and opposite to hdac6 null mutants. Consequently, reduced levels of HDAC6 or increased levels of ELP3, a Bruchpilot acetyltransferase, rescue the presynaptic density defects in TDP-43-expressing flies as well as the decreased adult locomotion. Our work identifies HDAC6 as a Bruchpilot deacetylase and indicates that regulating acetylation of a presynaptic release-site protein is critical for maintaining normal neurotransmission

    Guest Editorial

    Get PDF

    Drosophila Models of Tauopathies: What Have We Learned?

    Get PDF
    Aggregates of the microtubule-associated protein Tau are neuropathological hallmark lesions in Alzheimer's disease (AD) and related primary tauopathies. In addition, Tau is genetically implicated in a number of human neurodegenerative disorders including frontotemporal dementia (FTD) and Parkinson's disease (PD). The exact mechanism by which Tau exerts its neurotoxicity is incompletely understood. Here, we give an overview of how studies using the genetic model organism Drosophila over the past decade have contributed to the molecular understanding of Tau neurotoxicity. We compare the different available readouts for Tau neurotoxicity in flies and review the molecular pathways in which Tau has been implicated. Finally, we emphasize that the integration of genome-wide approaches in human or mice with high-throughput genetic validation in Drosophila is a fruitful approach
    corecore