975 research outputs found

    Airborne particle deposition in cleanrooms: deposition mechanisms

    Get PDF
    This article discusses the mechanisms of particle deposition onto cleanroom surfaces. The main mechanism for particles above about 0.5μm is gravitational settling. Turbulent deposition and electrostatic attraction can also occur at all particle sizes, and for particles below 0.5μm Brownian diffusion is important. Measurements of particle deposition rates (PDRs) were made of particles ≥ 0μm on witness plates orientated in different directions and exposed in different ventilation conditions, and it was concluded that over 80% of particles were deposited by gravitational sedimentation, and probably more than half of the remainder by turbulent deposition

    Slowing Down and Scattering of Ions in Solids

    Get PDF
    The interaction of particle beams with solids yields three parts, i.e. reflected particles, penetrating particles and trapped particles. At very low energies particle reflection is dominant, at very high energies penetration is the most important effect. Trapped particles are the result of energy loss processes, which on the other hand cause radiation damage in the solid. In the energy range discussed here, i.e. above energies where quantum effects, diffraction etc. are important and below energies where nuclear reactions, relativistic effects etc. may occur, the particle trajectories are classical. The energy loss process can be treated separately as nuclear and electronic stopping power. The collisions of the projectiles with target atoms are hence binary collisions involving a properly chosen screened Coulomb-potential. In single crystals the structural properties enable channeling, which is a very useful tool in sol id state analysis. The electronic stopping includes contributions from single collision processes and collective excitations. Both effects can be described by a dielectric response function. The range of applications covers analytical methods, means to modify solid state properties and also the production of thin films

    Airborne particle deposition in cleanrooms: relationship between deposition rate and airborne concentration

    Get PDF
    This article is the second of a series that discusses the deposition of airborne particles onto cleanroom surfaces. It investigates the relationship between the airborne concentration of a range of cumulative sizes of particles and the particle deposition rate (PDR) onto cleanroom surfaces, through knowledge of the deposition velocity of particles in air. The deposition velocity of a range of cumulative particle sizes was obtained by means of experiments, theoretical calculations, and literature search and the influence of a number of variables found in cleanrooms on the deposition velocity was investigated. The use of the deposition velocity to calculate the amount of deposition on cleanroom surfaces, such as manufactured products, is discussed, along with its use in deciding the required ISO 14644-1 class of cleanroom; these subjects will be discussed in more depth in the final article of this series

    Airborne particle deposition in cleanrooms: calculation of product contamination and required cleanroom class

    Get PDF
    This is the third and final article in a series that discusses the deposition of airborne particles onto critical surfaces in cleanrooms. This article explains a method for calculating the amount of particle or microbe-carrying particle deposition onto critical cleanroom surfaces, such as product, and a method for calculating the airborne particle cleanliness class, or airborne microbial concentration that is required to obtain a specified and acceptable amount of product contamination

    Kinetics of absorption of carbon dioxide in aqueous ammonia solutions

    Get PDF
    AbstractIn the present work the absorption of carbon dioxide into aqueous ammonia solutions has been studied in a stirred cell reactor, at low temperatures and ammonia concentrations ranging from 0.1 to about 7 kmol m−3. The absorption experiments were carried out at conditions where the so-called pseudo first order mass transfer regime was obeyed–and hence the kinetics of the reaction between carbon dioxide and ammonia could be derived. The results were interpreted according to the well-established zwitterion mechanism

    Inleiding tot econometrische modellen van landen van de E.E.G.

    Get PDF

    Integration through transients for Brownian particles under steady shear

    Full text link
    Starting from the microscopic Smoluchowski equation for interacting Brownian particles under stationary shearing, exact expressions for shear-dependent steady-state averages, correlation and structure functions, and susceptibilities are obtained, which take the form of generalized Green-Kubo relations. They require integration of transient dynamics. Equations of motion with memory effects for transient density fluctuation functions are derived from the same microscopic starting point. We argue that the derived formal expressions provide useful starting points for approximations in order to describe the stationary non-equilibrium state of steadily sheared dense colloidal dispersions.Comment: 17 pages, Submitted to J. Phys.: Condens. Matter; revised version with minor correction

    Stability transitions for axisymmetric relative equilibria of Euclidean symmetric Hamiltonian systems

    Get PDF
    In the presence of noncompact symmetry, the stability of relative equilibria under momentum-preserving perturbations does not generally imply robust stability under momentum-changing perturbations. For axisymmetric relative equilibria of Hamiltonian systems with Euclidean symmetry, we investigate different mechanisms of stability: stability by energy-momentum confinement, KAM, and Nekhoroshev stability, and we explain the transitions between these. We apply our results to the Kirchhoff model for the motion of an axisymmetric underwater vehicle, and we numerically study dissipation induced instability of KAM stable relative equilibria for this system.Comment: Minor revisions. Typographical errors correcte
    • …
    corecore